期刊文献+

基于光流法的迭代反投影超分辨率重构算法 被引量:5

Super Resolution Reconstruction Using Iterative Back Projection with Optical Flow Based Image Matching
下载PDF
导出
摘要 为了提高重构图像或者视频的分辨率,提出把新型的基于光流法的图像配准算法应用于迭代反投影(IBP)超分辨率算法中。在所提出的方法中,基于光流法的图像配准算法用来提高图像配准的准确性。首先,为了得到像素级别的运动矢量,基于光流法的图像配准算法被用于估计图像间的运动矢量,以得到更加准确的运动矢量矩阵。接着,利用所获得的运动矢量矩阵结合迭代反投影算法重构高分辨率的图像。同时,由于基于光流法的图像配准能够很好地估计视频图像间的运动,所提出的方法同样适用于视频图像的超分辨。实验结果表明,提出的方法对于图像或者视频的超分辨率效果,在主观效果和客观评价上都有一定的提升。 To improve the spatial resolution of reconstructed images and videos, proposes a super-resolution (SR) reconstruction method using iteratire back projection with a new optical flow based image matching. In the proposed method, optical flow based image matching is em- ployed to improve the accuracy of image registration. First, optical flow based image matching is performed between images to obtain pix- el-level motion fields. Then, high-resolution (HR) images are reconstructed based on the motion fields using iterative back projection (IBP) algorithm. Since the optical flow based image matching can adapt to various types of motions in real video scenes, the proposed method can be used in video super resolution. Experimental results demonstrate that, subjective and objective quality improvements are obtained by the proposed algorithm, when applied to image or video sequence.
作者 杨克伟
出处 《现代计算机(中旬刊)》 2014年第3期31-36,共6页 Modern Computer
基金 国家自然科学基金(No.61102135)
关键词 图像超分辨 视频超分辨 光流法 迭代反投影 Image Super Resolution Video Super Resolution Optical Flow herative Back Projection
  • 相关文献

参考文献9

  • 1Baikun Wan, Lin Meng, Dong Ming, Yong Hu. Video Image Super-resolution Restoration Based on Iterative Back-Projection Algorithm. IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, May.2009:46-49.
  • 2R. Y. Tsai,T. S. Huang. Multiframe Image Restoration and Registration. In Advances in Computer Vision and Image Processing, T. S. Huang, Ed. Greenwich, CT: JAI Press, 1984,1:317-339.
  • 3Haiying Song, Xiaohai He, Weilong Chen, Yanyue Sun. An Improved Iterative Back-projection Algorithm for Video Super-resolution Reconstruction. Symposium on Photonics and Optoelectronic, Jun. 2010:1-4.
  • 4Huiqin Xi, Chuangbai Xiao, Chunxiao Bian. Edge Halo Reduction for Projections onto Convex Sets Super Resolution Image Recon- struction. IEEE International Conference on Digital Image Computing Techniques and Applications, Dec. 2012:1-7.
  • 5Jin Chen, Jose Nunez-Yanez, Alin Achim. Video Super-Resolution Using Generalized Gaussian Markov Random Fields. IEEE Signal Processing Letters, vol. 19, no.2, Feb. 2012:63-66.
  • 6Changhyun Kim, Kyuha Choi, Jong Beom Ra. Example-Based Super-Resolution via Structure Analysis of Patches. IEEE Signal Pro- cessing Letters, vol.20, no.4, Apr. 2013:407-410.
  • 7Sun Deqing, S. Roth, M. J. Black. Secrets of Optical Flow Estimation and Their Principles. IEEE International Conference on Computer Vision and Pattern Recognition, 13-18 June 2010:2432-2439.
  • 8Qin F-Q, He X-H, Chen W-L, Yang X-M,Wu W. Video Superresolution Reconstruction Based on Sub-Pixel Registration and Itera- tive Back Projection. Journal of Electronic Imaging, vol.18, no.l, Jan,2009.
  • 9Patrick Vandewalle, Sabine Susstrunk, Martin Vetterli. A Frequency Domain Approach to Registration of Aliased Images with App- lication to Super-resolution, EURASIP Journal on Applied Signal Processing, 2006: 1-14.

同被引文献71

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部