期刊文献+

SUBORDINATION PROPERTIES OF MULTIVALENT FUNCTIONS INVOLVING AN EXTENDED FRACTIONAL DIFFERINTEGRAL OPERATOR

SUBORDINATION PROPERTIES OF MULTIVALENT FUNCTIONS INVOLVING AN EXTENDED FRACTIONAL DIFFERINTEGRAL OPERATOR
下载PDF
导出
摘要 The object of this article is to investigate inclusion, radius, and other various properties of subclasses of multivalent analytic functions, which are defined by using an extended version of the Owa-Srivastava fractional differintegral operator Ω(λ,p). The object of this article is to investigate inclusion, radius, and other various properties of subclasses of multivalent analytic functions, which are defined by using an extended version of the Owa-Srivastava fractional differintegral operator Ω(λ,p).
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第2期367-379,共13页 数学物理学报(B辑英文版)
关键词 Analytic functions p-valent functions meromorphic functions differintegraloperator differential subordination Analytic functions p-valent functions meromorphic functions differintegraloperator differential subordination
  • 相关文献

参考文献27

  • 1Kapoor G P, Mishra A K. Convex hulls and extreme points of some classes of multivalent functions. J Math Anal Appl, 1982, 87(1): 85-92.
  • 2Srivastava H M, Owa S. Current Topics in Analytic Function Theory. Singapore, New Jersey, London and Hong Kong: World Scientific Publishing Company, 1992.
  • 3Goodman A W. On the Schwarz-Christoffel transformation and p-valent functions. Trans Amer Math Soc, 1950, 68:204-223.
  • 4Miller S S, Mocanu P T. Second order differential inequalities in the complex plane. J Math Anal Appl, 1978, 65:289-305.
  • 5Miller S S, Mocanu P. T. Differential Subordinations: Theory and Applications. Series on Monographs and Textbooks in Pure and Applied Mathematics. Vol. 225. New York and Basel: Marcel Dekker, 2000.
  • 6Whittaker E T, Watson G N. A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions. Fourth Edition. Cambridge: Cambridige Univ Press, 1927.
  • 7Owa S. On the distortion theorems I. Kyungpook Math J, 1978, 18:53-59.
  • 8Owa S, Srivastava H M. Univalent and starlike generalized hypergeometric functions. Canad J Math, 1987, 39:1057-1077.
  • 9Srivastava H M, Owa S. Univalent Functions, Fractional Calculus, and Their Applications. Halsted Press (Ellis Horwood Limited, Chichester); New York: John Wiley, 1989.
  • 10Patel J, Mishra A K. On certain subclasses of multivalent functions associated with an extended fractional differintegral operator. J Math Anal Appl, 2007, 332:109-122.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部