期刊文献+

基于FMB和元胞自动机的实际业务流性能预测方法

Prediction Method of Actual Traffic Performance Based on FBM and Cellular Automaton
下载PDF
导出
摘要 为了有效刻画实际业务流性能状态,结合分形布朗运动模型(Fractional Brownian Motion,FBM)和元胞自动机提出一种新的预测方法 TSPCA(Traffic State Prediction method based on Cellular Automaton).该方法首先基于FBM模型推导了平均队列长度和平均时延的数学表达式,同时利用定义的元胞演化规则对估算结果进行修正,以提高预测精度.最后,通过NS2和MATLAB进行仿真实验,深入分析了影响该方法的关键因素,发现缓冲区较小时流量性能将由短相关特性支配,而缓冲区较大时性能由长相关支配,重置效应和截断效应对业务流性能影响较大.并且对比FARIMA和ARIMA的预测结果,证明该方法具有较好的适应性. In order to effectively describe the performance state of actual traffic, a novel prediction method TSPCA ( Traffic State Pre- diction method based on Cellular Automaton ) is proposed with Fractional Brownian Motion ( FBM ) model and cellular automaton. The method has deduced the mathematical expression of average queue length and average delay based on the FBM model, and has revised the estimated results with the cellular evolution rules that have been defined so as to improve the prediction accuracy. At last, a simulation experiment is conducted through NS2 and MATLAB, which analyses key factors that affect the method. And it is found that, the traffic performance is mainly related with short-dependence when buffer size is lower, and the traffic performance is mainly related with long-dependence when buffer size is bigger, which is affected by resetting effects and truncating effects. Compared to FARIMA and ARIMA, the results shows that TSPCA has better suitability.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第4期751-754,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61304187)资助 四川省教育厅科研项目(12ZB176 13ZA0296 13ZA0296 13ZB0052)资助 四川省科技计划项目(2014JY0111 2013GZ0016)资助 成都师范学院基金项目(CS13ZD01 YJRC2012-6) 资助
关键词 预测 分形 分形布朗运动模型 元胞自动机 prediction fractal fractional brownian motion model cellular automaton
  • 相关文献

参考文献2

二级参考文献43

  • 1罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803-1807. 被引量:11
  • 2朱刚,马良.函数优化的元胞蚂蚁算法[J].系统工程学报,2007,22(3):305-308. 被引量:18
  • 3戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 4Bernabe Dorronsoro,Enrique Alba.A simple cellular genetic algorithm for continuous optimization[A].IEEE Congress on Evolutionary Computation[C].Vancouver,BC,Canada,July 2006.2838-2844.
  • 5E Alba,B Dorronsoro,M Giacobini,et al.Decentralized cellular evolutionary algorithms[A].Handbook of Bioinspired Algorithms and Applications[C].CRC Press,2005.565-591.
  • 6G Rudolph,J Sprave.A cellular genetic algorithm with self-adjusting acceptance threshold[A].Genetic Algorithms in Engineering Systems:Innovations and Applications on IEE[C].Sheffield,UK,September 1995.365-372.
  • 7E Alba,B Dorronsoro.The exploration/exploitation tradeoff in dynarnic cellular genetic algorithms[J].IEEE Trans.on Evolutionary Computation,2005,9(2):126-142.
  • 8E Alba and J Troya.Cellular evolutionary algorithms:evaluating the influence of ratio[A].Proceedings of the 6th International Conference on Parallel Problem Solving from Nature[C].Berlin,Germany,2000.29-38.
  • 9Michael Kirley.A cellular genetic algorithm with disturbance:optimization using dynamic spatial interactions[J].Journal of Heuristics,2002,8(3):321-342.
  • 10Michael Kirley,Xiaodong Li,David G Green.Investigation of a Cellular Genetic Algorithm That Mimics Landscape Ecology[A].The Second Asia-Pacific Conference on Simulated Evolution and Learning on Simulated Evolution and Learning[C].Canberra,Australia,1999.90-97.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部