期刊文献+

中性进化算法模型及其实验研究 被引量:1

Exploration on Neutral Evolutionary Algorithm Model and its Experiments
下载PDF
导出
摘要 借鉴生物学中的非达尔文进化理论,并针对传统遗传算法中可能存在的"早熟收敛"、种群多样性维护困难等方面的问题,提出一种无传统"选择"操作的"中性进化"算法模型.该模型基于木村资生中性进化思想,侧重交叉和变异纯随机遗传操作,并采用自适应种群更新策略,使得算法结构更为简洁、多样性维持能力有所加强.若干数值类型的多峰函数测试以及复杂经典NP类318城市货郎担问题实验研究,已初步显示出中性进化算法在抑制"遗传支配"现象、避免陷入"早熟收敛"以及改进遗传算法的全局优化效果方面与Holland传统遗传算法相比性能较优的特性. Considering the arguments in biology non-Darwin's evolution theory and the existing problems of traditional genetic algo- rithm, that was easy to fall into the premature convergence and was difficult to maintain population diversity. This paper proposed a kind of neutral evolutionary algorithm model without traditional selection operation. This model was based on the evolutionary theory of Kimura Motoo and focused on the pure random genetic operation of crossover and mutation. It use adaptive update strategy. This make structure of model uncomplicated and make population diversity maintenance better. Through the experiment of some multimodal test functions and the classic NP 318 cities the traveling salesman problem, some experiment results have shown that neutral evolution- ary algorithm model is superior to traditional Holland genetic algorithm model in restraining "genetic dominance", avoiding "prema- ture convergence" , and improving global optimization effectiveness etc.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第4期824-826,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(70071043)资助
关键词 遗传算法 中性演化 早熟收敛 TSP问题 genetic algorithms neutral evolutionary premature convergence traveling salesman problem
  • 相关文献

参考文献9

  • 1Chen Guo-liang, Wang Xu-fa, Zhuang Zhen-quan, et al. Genetic al- gorithm and its application [ M]. Pecking:Post &Telecom Press, 1996.
  • 2Merrell D J. Ecological genetics [ M ]. London :Longman, 1981.
  • 3Wirt Atmar. Notes on the simulation of evolution [ J]. IEEE Trans. on Neural Networks, 1994,5 ( 1 ) : 130-147".
  • 4陈贤富,庄镇泉,王煦法.遗传算法的自适应进化策略及TSP问题的遗传优化[J].电子学报,1997,25(7):111-114. 被引量:21
  • 5Darrell Whitley, Doug Hains, Adele Howe. A hybrid genetic algo- rithm for the traveling salesman problem using generalized partition crossover [ J ]. 2010,6238 (0302-9743) :566-575.
  • 6Murat Albayrak, Novruz Allahverdi. Development a new mutation operator to solve the travelling salesman problem by aid of genetic algorithms [J]. Expert Systems with Applications, 2011,38 ( 3 ) : 1318-1319.
  • 7Song Yong. Study on a novel associative memory model based on circuit expression of information [ D]. Hefei: University of Science and Technology of China,2006.
  • 8宋勇,陈贤富,戴蓓倩.弹性TSP及其并行遗传优化[J].小型微型计算机系统,2006,27(5):842-845. 被引量:6
  • 9Mustafa Kaya. The effects of two new crossover operators on genet- ic algorithm performance [ J]. Applied Soft Computing, 2011,11 (1) :883-884.

二级参考文献3

共引文献25

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部