期刊文献+

一种新的非线性末制导律设计

A New Nonlinear Terminal Guidance Law Design
下载PDF
导出
摘要 基于拦截机动目标的末制导问题,提出了一种新的具有鲁棒性的非线性末制导律。基于二维平面内弹目相对运动学关系,将目标机动作为有界干扰量,建立了描述弹目相对运动的数学模型。引入一阶弹体动态特性,借助于零化弹目视线角速率的思想,采用Nussbaum-type增益技术,设计一种非线性鲁棒末制导律,同时利用Lyapunov稳定性理论证明了在该制导律作用下末制导系统的稳定性。最后通过与比例导引律进行对比,数字仿真验证了所设计的非线性制导律的有效性,具有很强的鲁棒性和适应性。 For the case of the maneuvering targets interception, a new nonlinear terminal guidance law with robustness is proposed. The mathematic model is built according to two-dimensional relationship between missile and target whose acceleration as disturbance is introduced. The autopilot dynamic is considered, and by employing the Nussbaum-type gain technique, a global nonlinear control strategy is contrived to obtain the nonlinear guidance law based on the method of zeroing the rate of line-of-sight angle, and the stability of guidance system is strictly proven under the nonlinear guidance law based on Lypunov theory. Finally an illustrative example is given to show that new guidance law is suitable to the missile for intercepting the target with maneuver than proportional navigation law, and the better precision of guidance law is obtained.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第3期148-150,158,共4页 Fire Control & Command Control
基金 航天支撑基金资助项目(N11XW0001)
关键词 末制导律 非线性 稳定性 视线角速率 terminal guidance law, nonlinear, stability, rate of line-of-sight angle
  • 相关文献

参考文献9

  • 1Babu K R,Sarma I G.,Swamy K N.Switch bias ProportionalNavigation for Homing Guidance Against Highly Maneuver-ing Targets[J].Journal of Guidance,Control and Dynamics,1994,17(6),1357-1363.
  • 2Cho H J,Ryoo C K.Closed-form Optimal Guidance Law forMissiles of Time-varying Velocity[J].Journal of Guidance,Control,and Dynamics,1996,19(5):1017-1022.
  • 3Zhou D,Mu C D,Xu W L.Adaptive Sliding-mode Guidanceof a Homing Missile[J] Journal of Guidance,Control,andDynamics,1999,22(4),589-594.
  • 4郭建国,周凤岐,周军.基于零脱靶量设计的变结构末制导律[J].宇航学报,2005,26(2):152-155. 被引量:43
  • 5Scott Bezic,Ilan Tusnak,W.Steven Gray.Guidance of Hom-ing Missile Via Nonlinear Geometric Control Method[J].Journal of Guidance,Control and Dynamics,1995,18(3):441-448.
  • 6Shieh C S.Tunable H∞ Robust Guidance Law for HomingMissiles[J].IEEE,Control Theroy Application,2004,151(1):103-107.
  • 7Nussbaum R D.Some Remark on the Conjecture in Parame-ter Adaptive Control[J].Systems and Control Letters,1983,3(4):243-246.
  • 8Ryan E P.A Universal Adaptive Stabilizer for a Class ofNonlinear Systems[J].Systems and Control Letters,1991,11(3):210-212.
  • 9王强德,井元伟,张嗣瀛.控制方向未知的非线性系统的自适应输出跟踪控制[J].控制与决策,2006,21(3):248-252. 被引量:8

二级参考文献20

  • 1王强德,井元伟,张嗣瀛.非线性系统的自适应实用输出跟踪控制(英文)[J].自动化学报,2004,30(3):357-363. 被引量:4
  • 2王强德,井元伟,张嗣瀛.一类不确定非线性系统的鲁棒自适应ε-输出跟踪控制[J].控制与决策,2004,19(6):711-713. 被引量:4
  • 3Zhou Di, Mu Chundi, Xu Wenli. Adaptive sliding-mode guidance of a homing missile[J]. Journal of Guidance, Control, and Dynamics, 1999,22(4):589-594
  • 4Zhou Di, Mu Chundi, Xu Wenli. Optimal sliding-mode guidance of a homing missile[A]. Proceedings of the 38th Conference on Decision & Control[C], 5131-5136
  • 5K.Ravindra Babu, Sarma I G, Swamy K N. Switch bias proportional navigation for homing guidance against highly maneuvering targets[J]. Journal of Guidance, Control and Dynamics,1994,17(6):1357-1363
  • 6Ciann-Dong Yang, Hsin-Yuan Chen. Nonlinear robust guidance law for homing missile[J]. AIAA Journal of Guidance, Control, and Dynamics, 1998,21(6):882-890
  • 7Scott Bezic, Ilan Tusnak, W. Steven Gray. Guidance of homing missile via nonlinear geometric control method[J]. J of Guidance, Control and Dynamics, 1995,18(3): 441-448
  • 8高为炳.变结构控制理论基础及设计方法[M].北京:科学出版社,1998..
  • 9Krstic M,Kanellakopoulos I,Kokotovic P V.Nonlinear and Adaptive Control Design[M].New York:Wiley,1995.
  • 10Lin W,Qian C J.Adding a Power Integrator:A Tool for Global Stabilization of High-order Cascade Nonlinear Systems[J].Systems and Control Letters,2000,39(5):339-351.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部