期刊文献+

钒钛磁铁精矿内配煤球团还原分形论动力学研究

Fractal Kinetics Study on Reduction of Vanadic-Titanomagnetite-Coal Mixed Pellet
下载PDF
导出
摘要 基于分形理论建立了矿煤球团还原动力学新模型,通过钒钛磁铁精矿内配煤球团加热还原试验,探讨钒钛磁铁精矿内配煤球团分形还原机理.实验结果发现,钒钛磁铁精矿表面分维为2.2686;实验温度范围(960~1200℃)内,球团还原时间短于23 min时,其表观速率常数与温度之间关系为k1=624.843exp(-1.5324×10^4/T)min-1,活化能为127.40kJ·mol-1;球团还原时间超过28 min后,其表观速率常数与温度之间关系为k2=0.035×exp(-0.5329×10^4/T) min-1,活化能为44.31kJ·mol-1.结果表明,球团还原初期主要受碳气化反应限制,后期主要受内扩散限制. A fractal kinetics model was built and some experiments were carried out so as to study the fractal reduction kinetics of vanadic-titanomagnetite-coal mixed pellet. The experiments show that the fractal dimension of the concentrate is 2. 2686. The relations between the reduction velocity constant and temperature (960-1200℃) are kl 624. 843exp(-1. 5324×10^4/T) min-1 in about 23 rain and k2 =0. 035exp(-0. 5329 ×10^4/T) rain-1 after about 28 min, respectively. And the activation energy of the pellet is 127. 40 kJ · mo1-1 in about 23 rain and 44. 31 kJ·mo1-1 after about 28 rain, respectively. It shows that the limiting unit of the reduction of the pellet is the carbon gasification reaction in earlier stage and the diffusion in later stagein, respectively.
出处 《材料导报》 EI CAS CSCD 北大核心 2014年第4期153-158,共6页 Materials Reports
基金 国家自然科学基金(51174122)
关键词 钒钛磁铁矿精矿 球团 还原 分形动力学 vanadic-titanomagnetite, pellet, reduction, fractal kinetics
  • 相关文献

参考文献13

  • 1辛厚文.分形介质反应动力学[M].上海:上海科技教育出版社,2000.
  • 2诸武扬.材料科学中的分形[M].北京:化学工业出版社,2004..
  • 3Abraham M C,Ghosh A.Kinetics of reduction of iron oxide by carbon[J].Ironmaking Steelmaking,1979,1 (1):14.
  • 4Nascimento R C,Mourao M B,Capocchi J D T.Kinetic and catastrophic swlling during reduction of iron ore in carbon bearing pellets[J].Ironmaking Steelmaking,1999,26 (3):182.
  • 5Rao Y K.The kinetics of reduction of hematilte by carbon[J].Metall Trans,1971,2(5):1439.
  • 6Lu W K,Huang D Frank.The evolution of ironmaking process based on coal-containing iron ore agglomerates[J].ISIJ Int,2001,41(8):807.
  • 7Wang Q,Yang Z,Tian J,et al.Mechanisms of reduction in iron ore-coal composite pellet[J].Ironmaking Steelmaking,1997,24(6):457.
  • 8Huang B H,Lu W K.Kinetics and mechanisms of reactions in iron ore/coal composites[J].ISIJ Int,1993,33(10):1055.
  • 9Liu Guisu,Vladimir Strezov,John A Lucas,et al.Thermal investigations of direct iron ore reduction with coal[J].Thermochimiea Acta 2004,410(1-2):133.
  • 10James P Hyslip,Luis E Vallejo.Fractal analysis of the roughness and size distribution of granular materials[J].Eng Geol,1997,48 (3-4):231.

二级参考文献10

  • 1杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899. 被引量:792
  • 2[1]Fan Shimin(樊世民), Gai Guosheng(盖国胜), Miao Hezhuo (苗赫濯). Preparation and Application of Composite Ground Calcium Carbonate Coated With Nano-Particles[C]. The 2nd Asian Particle Technology Symposium 2003, Malaysia Penang: 2003:113
  • 3Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. , 1989,53:987 ~996
  • 4Neuman S P. Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour. Res., 1990,26:1 749~1 758
  • 5Perfect E, Kay B D. Application of fractal in soil and tillage research: A review. Soil and Tillage Research, 1995,36: 1 ~ 20
  • 6Mandelbrot B B. The fractal geometry of nature. San Francisco: W.H. Freeman, 1983. 488
  • 7Tyler S W,Wheatcraft S W. Fractal scaling of soil particle-size distribution: Analysis and limitations. Soil Sci. Soc. Am. J. ,1992,56:362 ~ 369
  • 8Martin M A, Montero E. Laser diffraction and mutifractal analysis for the characterization of dry soil volume-size distributions. Soil and Tillage Research,2002,64:113 ~ 123
  • 9Crawford J W, Naohiro M. Heterogeneity of the pore and solid volume of soil: Distinguishing a fractal space from its non-fractal complement. Geoderma,1996,73: 183~195
  • 10黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497. 被引量:231

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部