期刊文献+

GaInP应力补偿层在InAs/GaAs量子点中的初步应用

Application of GaInP Strain Compensation Layers in InAs/GaAs Quantum Dots
下载PDF
导出
摘要 利用金属有机化合物气相沉积(MOCVD)技术生长了双层InAs/GaAs量子点,并将GaInP作为应力补偿层引入到其中,采用原子力显微镜(AFM)对量子点的结构和生长质量进行了表征与分析.实验结果表明,应变补偿层的采用可有效改善第二层量子点质量:(1)面密度最高可达7.5×1010 cm-2,而没有应变补偿层的样品的面密度仅为5.8×1010 cm-2;(2)缺陷岛密度可从不采用应变补偿时的9.6×107 cm-2降低至2.8×107 cm-2;(3)量子点的均匀性和尺寸也明显改善.此外,不同应变补偿层厚度比较实验结果显示,厚度过高或过低的应变补偿层都不能起到很好的补偿作用,取1~3 nm之间为佳;不同GaInP补偿层组分的比较实验结果表明,Ga组分为0.566的样品补偿效果比0.606的样品更好. Two-stack InAs/GaAs quantum dot structures with GaInP strain compensation layers inserted were grown by metal organic chemical vapor deposition.The structure and quality of the quantum dots were investigated using atomic force microscopy.The results show that the quantum dots' quality of the second layer were improved by using strain compensation layer:(1)the surface dot density up to 7.5 × 1010 cm-2,which is significantly larger than the sample without strain compensation layer,5.8 × 1010 cm-2 ; (2) the defect island density reduce from 9.6 × 107 cm-2 to 2.8× 107 cm-2 ; (3)the uniformity and size of the quantum dots are also significantly improved.The influence of the thickness and the Ga concentration of the GaInP strain compensation layers is also discussed,it reveals that it can not play a very good role in compensating if the thickness is too thick or too thin,the optimum value is between 1 nm to 3 nm.And the sample with a Ga concentration of 0.566 is better than the sample of 0.606.
出处 《材料导报》 EI CAS CSCD 北大核心 2014年第6期29-32,共4页 Materials Reports
基金 云南省重点基金(2009CC012) 云南省中青年学术技术带头人后备人才(2008PY054) 长江学者和创新团队发展计划
关键词 INAS量子点 GaInP应力补偿层 厚度 组分 InAs quantum dots GaInP strain compensation layer thickness concentration
  • 相关文献

参考文献23

  • 1Zhou D, Sharma G, Thomassen S F, et al. Optimization to- wards high density quantum dots for intermediat band solar cells grown by molecular beam epitaxy[J]. Appl Phys Lett, 2010,96(6):913.
  • 2Christopher G B, David V F, Ryne P R, et al. Near 1 V open ereuit voltage InAs/GaAs quantum dot solar cells[J]. Appl Phys Lett,2011,98(16) : 105.
  • 3Sugaya T, Kamikawa Y, Furue S, et al. Multi-stacked quan] turn dot solar cells fabricated by intermittent dposition of In] GaAs[J]. Solar Energy Mater Solar Cells, 2011,95 (1) : 163[.
  • 4Tutu F K, Sellers I R, Peinado M G, et al. Improved per- formance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer[J]. J Appl Phys, 2011,111(4):101.
  • 5赵寅生,向卫东,钟家松,蔡文,杨海龙,王京,董永军.纳米量子点材料在LED中的研究进展[J].材料导报,2011,25(5):28-31. 被引量:6
  • 6Takata A, Akahane K, Yamamoto N, et al. Optical gain of multi-stacked InAs quantum dots grown on InP(311) B sub- strate by strain-compensation-technique[J]. Phys Status So- lidi, 2011,8(2) : 254.
  • 7Tatebayashi J, Numtawong N,Wong P S, et al. Strain col pensation technique in self-assembled InAs/GaAs quantt dots for applications to photonic devices[J]. J Phys D: At Phys, 2009,42 (7) : 3722.
  • 8吴巨,王占国.InAs/GaAs量子点材料和激光器[J].微纳电子技术,2005,42(11):489-494. 被引量:4
  • 9Akahane K, Yamamoto N, Kawanishi T. Fabrication of ul tra-high-density InAs quantum dots using the strain-corn pensation technique[J]. Appl Mater Sci, 2011,208(2) : 425.
  • 10Akahane K, Yamamoto N. Wide-band emissions from high- ly stacked quantum dot structure grown using the strain- compensation technique[J]. J Cryst Growth, 2011,323 (1) : 154.

二级参考文献51

  • 1Ye S, Xiao F, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, tech- niques and properties[J]. Mater Sei Eng R: Reports, 2010, 71(1):1.
  • 2Andrew C Grimsdale, et al. Synthesis of light-emitting conjugated polymer[J]. Chem Rev, 2009,109 (3) : 897.
  • 3Coe Sullivana S, Steckelb J S, et al. Method for fabrication of saturated RGB quantum dot light emitting deviees[J], Proc SHE, 2005,5739 : 108.
  • 4Zhao J L, Bardecker J A, et al. Efficient CdSe/CdS quan-turn dot light-emitting diodes using a thermally polymerized hole transport layer [J]. Nano I.ett, 2006,6(3):463.
  • 5Steckel J S, Snee P, et al. Color saturated green-emitting QD-LEDs [J]. Angew Chem Int Ed Eng, 2006, 45(35): 5796-9.
  • 6Shi Chunmeng, Zhu Ying, et al. Quantum dots: Emerging applications in urologic oncology[J]. Urologic Oncofogy, 2008,26(1) :86.
  • 7Farag A A M, Yahia I S, Fadel M. Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode[J]. Int J Hy drogen Energy, 2009,34 (11) : 4906.
  • 8Timothy Jamieson, Raheleh Bakhshi, ct al. Biological appli- cations of quantum dots [J]. Biomaterials, 2007, 28 ( 31 ) : 4717.
  • 9Cao Feng, Shi Weidong, et al. Hydrothermal synthesis and high photo catalytic activity of 3D wurtzite ZnSe hierarchical nanostructures [J]. J Phys Chem C, 2008,112(44) : 17095.
  • 10Rachel S Dibbell, David F Watson. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TjOz nano-particles [J]. J Phys Chem C, 2009,113(8) : 3139.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部