期刊文献+

静电纺SF/COL/PLLA和SF/COL/PLCL三维纳米纤维支架化学结构和浸润性对比研究 被引量:1

Comparative Study on Chemical Structure and Hydrophilic Property of SF/COL/ PLLA and SF/COL/PLCL 3-dimensional Nanofibers Scaffolds by Electrospinning
下载PDF
导出
摘要 采用静电纺丝法,以丝素(SF)、胶原(COL)混合聚左旋乳酸(PLLA)和聚(左旋乳酸-己内酯)(PLCL),制备不同质量配比的SF/COL/PLLA和SF/COL/PLCL三维纳米纤维支架材料,采用傅里叶红外光谱(FTIR)分析高分子聚合物对丝素、胶原结构的影响,测量接触角以检测其亲水性能。结果表明:高分子聚合物破坏丝素胶原之间形成的氢键,使以β折叠结构为主的SF变为以无规卷曲和α螺旋结构为主;当SF/COL与高聚物质量比为70∶30时,接触角θ<90°,液体对三维纳米纤维支架材料的润湿性较好,且SF/COL/PLCL的亲水性比SF/COL/PLLA的亲水性更优。 The different mass ratio of silk fibroin/collagen/PLLA and silk fibroin/collagen/PLCL 3-dimensional nanofibers scaffolds were prepared,using electrospinning technique with the raw materials of silk fibroin,collagen and PLLA,PLCL.The effects of the silk fibroin and collagen on the polymer were analyzed by FTIR and water contact angle,respectively.The results indicate that SF/COL have no effect on the polymer,but the polymer would destroy the hydrogen bonds formed between silk fibroin and collagen resulted to conformation changing from β-sheet to random coil and α-helix.When SF/COL and the polymer weight ratio of 70 ∶ 30,the water contact anger is less than 90° indicating that water moisturies 3-dimensional nanofibers scaffolds well.In addtion,compared with SF/COL/PLLA,the hydrophilism of SF/COL/PLCL is much better.
出处 《材料导报》 EI CAS CSCD 北大核心 2014年第6期82-85,共4页 Materials Reports
基金 国家自然科学基金青年科学基金(81102712) 教育部中央高校基本科研业务费项目面上项目(lzujbky-2011-98)
关键词 静电纺 丝素 胶原 聚左旋乳酸 聚(左旋乳酸-己内酯) 接触角 electrospinning SF COL PLLA PLCL contact angle
  • 相关文献

参考文献1

二级参考文献52

  • 1Formhals A. Process and apparatus for preparing artificial threads: US, 1975504[P]. 1934-10-02
  • 2Blackwood K A, Mckean R, Canton I, et al. Development of biodegradable electrospun scaffolds for dermal replacement[J]. Biomaterials, 2008,29 : 3091
  • 3Rho K S, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing[J]. Biomaterials, 2006,27 : 1452
  • 4Powell H M, Boyce S T. Fiber density of electrospun gela tin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes[J]. J Biomed Mater Res, 2008,84A: 1078
  • 5Noh H K, Lee S W, Kim J M, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts[J]. Biomaterials, 2006,27 : 3934
  • 6Ji Y, Ghosh K, Shu X Z, et al. Electrospun three-dimensional hyaluronic acid nanofibrous sc-affolds [J]. Biomaterials, 2006,27 (20) : 3782
  • 7Zhang Y Z, et al. Characterization of the surface biocompatibility of the electrospun PCL-Collagen nanofibers using fibroblasts[J]. Biomacromolecules, 2005,6 : 2583
  • 8Mo X M, Xu C Y, Kotaki M, et al. Electrospun P(LLACL) nanofiber: A biomimetie extraeellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials, 2004,25 : 1883
  • 9Xu C Y, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure:A potential scaffold for blood vessel engineering[J]. Biomaterials, 2004,25 : 877
  • 10Inoguchi H, Kwon K, et al. Mechanical responses of a compliant eleetrospun poly (L-lactide-co-ε-caprolactone) small- diameter vascular graft[J]. Biomaterials, 2006,27: 1470

共引文献5

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部