期刊文献+

一种新的基于最大边缘准则的监督流形学习方法 被引量:1

New Supervised Manifold Learning Method Based on MMC
下载PDF
导出
摘要 在深入研究局部样条嵌入算法(LSE)的基础上,引入明确的线性映射关系,构建平移缩放模型和正交化特征子空间,提出了一种正交局部样条判别投影算法(O-LSDP),有效解决了原始LSE算法存在的两个主要问题:样本外点学习问题和无监督模式学习问题。该算法能够应用于模式分类问题并显著改善算法的分类识别能力。在标准人脸数据库上进行的实验比较分析验证了该算法的有效性与可行性。 Based on the analysis of local spline embedding (LSE) method,we proposed an efficient feature extraction algorithm called orthogonal local spline discriminant projection (O-LSDP).By introducing an explicit linear mapping,constructing different translation and rescaling models for different classes as well as orthogonalizing feature subspace,OLSDP can effectively circumvent the two major shortcomings of the original LSE algorithm,i.e.,out-of-sample and unsupervised learning.O-LSDP not only inherits the advantages of LSE which uses local tangent space as a representation of the local geometry so as to preserve the local structure,but also makes full use of class information and orthogonal subspace to significantly improve discriminant power.Extensive experiments on standard face databases and plant leaf data set verify the feasibility and effectiveness of the proposed algorithm.
出处 《计算机科学》 CSCD 北大核心 2014年第4期273-279,301,共8页 Computer Science
基金 国家自然科学基金(61272333 61273302 61005010) 安徽省自然科学基金(1208085MF94 1208085MF98 1308085MF84)资助
关键词 特征提取 子空间学习 局部样条嵌入 最大边缘准则 流形学习 Feature extraction Subspace learning Local spline embedding Maximum margin criterion Manifold learning
  • 相关文献

参考文献29

  • 1Tenenbaum J B,de Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290 (5500):2319-2323.
  • 2Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 3Saul L K,Roweis S T.Think globally,fit locally:unsupervised learning of low dimensional manifolds[J].The Journal of Machine Learning Research,2003,4:119-155.
  • 4Belkin M,Niyogi P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C] //Proceedings of Advances in Neural Information Processing Systems.2002,14:585-591.
  • 5Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 6Donoho D L,Grimes C.Hessian eigenmaps:Locally linear embedding techniques for high-dimensional data[C] //Proceedings of the National Academy of Sciences of the United States of America.2003:5591-5596.
  • 7Weinberger K Q,Saul L K.Unsupervised learning of image manifolds by semidefinite programming[C] // Proceedings of CVPR-04.2004:988-995.
  • 8Weinberger K Q,Saul L K.An introduction to nonlinear dimensionality reduction by maximum variance unfolding[C] //Proceedings of AAA06.2006:1683-1686.
  • 9Zhang Z,Zha H.Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J].SIAM J.Scientific Computing,2005,26(1):313-338.
  • 10Lin T,Zha H.Riemannian manifold learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,30(5):796-809.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部