期刊文献+

基于局部强度比率特征的前景检测 被引量:1

Robust Foreground Detection Using Local Intensity Ratio
下载PDF
导出
摘要 对运动的真实前景目标进行实时提取是监控视频中的一个基本步骤。在前景提取过程中,阴影消除一直是一个较难解决的问题。为解决此问题,根据光照模型提出了局部强度比率模型,并证明其具有光照不变性特征。同时证明,如果视频图像噪声高斯分布,则局部强度比率也满足高斯分布。在通过高斯混合模型获取前景的过程中,用局部强度比率代替像素值进行处理,得到消除阴影后的前景。实验表明,本方法在不同的场景下可以有效地消除阴影,得到无阴影的前景,同其他方法比较,显示出较好的性能。 Real time segmentation of foreground objects in video sequences is a fundamental step for surveillance.This paper proposed a local intensity ratio(LIR) to remove shadow.The local intensity ratio has the illumination invariance feature which is based on the analysis of illumination change model.The distribution of the LIR was discussed.We used the local intensity ratio instead of pixel intensity for Gaussian Mixture ModeI(GMM),and then got the foreground without shadow.Based on experimental results,the LIR feature shows excellent performance under various illumination change conditions while operating in real-time.
出处 《计算机科学》 CSCD 北大核心 2014年第3期293-296,F0003,共5页 Computer Science
基金 中央高校基本科研业务费专项资金资助项目(2013QC024)资助
关键词 局部强度比率 阴影消除 高斯混合模型 光照变化 Local intensity ratio(LIR) Shadow remove Gaussian mixture model (GMM) Illumination change
  • 相关文献

参考文献20

  • 1Piccardi M.Background subtraction techniques:a review[C] //IEEE International Conference on Systems,Man and Cybernetics.2004:3099-3104.
  • 2Sanin A,Sanderson C,Lovell B.Shadow detection:A survey and comparative evaluation of recent methods[J].Pattern Recognition,2012,45:1684-1695.
  • 3Al-Najdawi N,Bez H E,Singhai J,et al.A survey of cast shadow detection algorithms[J].Pattern Recognition Letters,2012,33:752-764.
  • 4Joshi A,Papanikolopoulos N.Learning to detect moving shadows in dynamic environments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30 (11):2055-2063.
  • 5Liu Z,Huang K,Tan T,et al.Cast shadow removal combining local and global features[C] //IEEE Conference on Computer Vision and Pattern Recognition.2007:1-8.
  • 6Martel-Brisson N,Zaccarin A.Learning and removing cast shadows through a multi distribution approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(7):1133-1146.
  • 7Porikli F,Thornton J.Shadow flow:a recursive method to learn moving cast shadows[C] // Tenth IEEE International Conference on Computer Vision.2005:891-898.
  • 8查宇飞,楚瀛,王勋,马时平,毕笃彦.一种基于Boosting判别模型的运动阴影检测方法[J].计算机学报,2007,30(8):1295-1301. 被引量:9
  • 9韩忠民,刘志,张兆杨,陆宇.视频分割中运动阴影消除的新方法[J].中国图象图形学报,2009,14(10):2110-2113. 被引量:6
  • 10Nadimi S,Bhanu B.Physical models for moving shadow and object detection in video[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):1079-1087.

二级参考文献26

  • 1Cucchiara R, Granan C, Piecardi M, et al. Detecting moving objects, ghosts, and shadows in video streams [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10): 1337-1342.
  • 2Chien Shao-yi, Ma Shyh-yih, Chen Liang-gee. Efficient moving object segmentation algorithm using background registration technique [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(7) : 577-586.
  • 3Hsieh Jun-wei, Hu Wen-fong, Chang Chia-jung, et al. Shadow elimination for effective moving object detection by Gaussian shadow modeling [ J ] . Image and Vision Computing, 2003, 21 ( 6 ) : 505-516.
  • 4Rosin P, Ellis T. Image difference threshold strategies and shadow detection[ A]. In: Proceedings of the 1995 British Conference on Machine Vision [ C ], Birmingham, United Kingdom, 1995: 347-356.
  • 5Salvador E, Cavallaro A, Ebrahimi T. Cast shadow segmentation using invarlant color features [ J ]. Computer Vision and Image Understanding, 2004, 95 (2) :238-259.
  • 6Xu Dong, Liu Jian-zhuang, Li Xue-long, et al. Insignificant shadow detection for video segmentation [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15 (8) : 1058-1064.
  • 7John Canny. A computational approach to edge detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6) :679-698.
  • 8Adams R, Bischof L. Seeded region growing[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16 (6): 641-647.
  • 9Horprasert T,Harwood D,Davis L.A statistical approach for real-time robust background subtraction and shadow detection//Proceedings of the IEEE Frame-Rate Workshop.Kerkyra,Greece,1999:1-9
  • 10Mikic I,Cosman P C,Kogut G T,Trivedi M M.Moving shadow and object detection in traffic scenes//Proceedings of the IEEE International Conference on Pattern Recognition.Los Alamitos,California,2000:321-324

共引文献12

同被引文献17

  • 1王明佳,王延杰,张旭光.利用邻域象素合成实现对目标的快速自动标记[J].微型机与应用,2005,24(9):49-51. 被引量:1
  • 2Saroj K Mehera, M N Murty. Efficient method of moving shadow detec- tion and vehicle classification [ J ]. International Journal of Electronics and Communications,2013,67 ( 8 ) : 665 - 670.
  • 3Hsieh J W, Yu S H, Chen Y S, et al. A shadow elimination method for vehicle analysis [ C ]//Proc. ICPR, Cambridge, UK, 2004, 4:372 - 375.
  • 4Yoneyama A, Yeh C H, Kuo C C J. Moving cast shadow elimination for robust vehicle extraction based on 2-D joint vehicle/shadow models [ C]//Proc. ICAVSBS,Miami ,FL,2003:21 -22.
  • 5Prati h,Mikic I, Trivedi M M, et al. Detecting moving shadows: Algo- rithms and evaluation[J]. IEEE Trans. Pattern Anal. Mach. Intell. , 2003,25(7) :918 -923.
  • 6Gevers T, Stokman H. Classifying color edges in video into shadow-ge- ometry, highlight, or material transitions [ J ]. IEEE Trans. Multimedia, 2003,5 (2) : 237 - 243.
  • 7Jurgen Stander, Roland Mech, Jorn Ostermann. Detection of Moving Cast Shadows for Object Segmentation[ J]. IEEE Transactions on Mul- timedia, 1999,1 ( 1 ) :65 - 76.
  • 8Sun B, Li S. Moving cast shadow detection of vehicle using combined color models [ C ]//Chinese Conf. on Pattern Recognition, IEEE, Chongqing, China,2010 : 1 - 5.
  • 9Kaitai Song, Jenchao Tai. Detection of Moving Cast Image-Based Traffic Monitoring[ J]. Proceedings of the IEEE ,2007,95(2) :413 -426.
  • 10Jiangyan Dai, Miao Qi, Xiaoxi Yu, et al. Integrated moving cast shadows detection method[J]. Optical Engineering,2012,51 ( 11 ) : 117005 - 1 -14.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部