摘要
针对稀疏贝叶斯压缩感知算法存在复杂度高、收敛速度慢等缺陷,提出了一种快速变分稀疏贝叶斯学习的频谱检测与定位算法.该算法在原始问题求解过程中增加了辅助变量,消除了原问题模型中未知变量之间耦合度高的问题.并依据稀疏参数的收敛情况,自适应删除不收敛稀疏参数对应的基函数,从而进一步加快了算法的收敛速度.实验结果表明:该算法在收敛速度和频谱检测精度上有显著的改善.
Based upon the fact that sparse Bayesian compressed sensing algorithm has the defects of high complexity and slow convergence speed , a spectrum sensing and location algorithm based on fast variational sparse Bayesian learning is proposed.The algorithm adds some auxiliary variable in the process of solving original problem , which eliminates the high coupling coefficient between the unknown variables in the original model .At the meantime, the algorithm can adaptively delete the basic functions corresponding to un-convergence sparse parameters according to the converging conditions of the sparse parameters , thus leading to the effect that the velocity of convergence is further accelerated .The experimental results show that the algorithm significantly improves the accuracy and speed of sensing .
出处
《中南民族大学学报(自然科学版)》
CAS
2014年第1期62-66,共5页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(61072075)
关键词
认知无线电
频谱感知
变分稀疏贝叶斯学习
压缩采样
cognitive radio
spectrum sensing
variational sparse Bayesian learning
compressive sampling