期刊文献+

基于快速变分稀疏贝叶斯学习的频谱感知与定位

Spectrum Sensing and Location Based on Fast Variational Sparse Bayesian Learning
下载PDF
导出
摘要 针对稀疏贝叶斯压缩感知算法存在复杂度高、收敛速度慢等缺陷,提出了一种快速变分稀疏贝叶斯学习的频谱检测与定位算法.该算法在原始问题求解过程中增加了辅助变量,消除了原问题模型中未知变量之间耦合度高的问题.并依据稀疏参数的收敛情况,自适应删除不收敛稀疏参数对应的基函数,从而进一步加快了算法的收敛速度.实验结果表明:该算法在收敛速度和频谱检测精度上有显著的改善. Based upon the fact that sparse Bayesian compressed sensing algorithm has the defects of high complexity and slow convergence speed , a spectrum sensing and location algorithm based on fast variational sparse Bayesian learning is proposed.The algorithm adds some auxiliary variable in the process of solving original problem , which eliminates the high coupling coefficient between the unknown variables in the original model .At the meantime, the algorithm can adaptively delete the basic functions corresponding to un-convergence sparse parameters according to the converging conditions of the sparse parameters , thus leading to the effect that the velocity of convergence is further accelerated .The experimental results show that the algorithm significantly improves the accuracy and speed of sensing .
出处 《中南民族大学学报(自然科学版)》 CAS 2014年第1期62-66,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61072075)
关键词 认知无线电 频谱感知 变分稀疏贝叶斯学习 压缩采样 cognitive radio spectrum sensing variational sparse Bayesian learning compressive sampling
  • 相关文献

参考文献11

  • 1葛雨明,孙毅,蒋海,李军,李忠诚.基于认知无线电技术的动态频谱分配方案研究[J].计算机学报,2012,35(3):446-453. 被引量:15
  • 2张光华,仇晶.认知无线电网络中基于信任的合作频谱感知框架[J].微电子学与计算机,2011,28(9):1-4. 被引量:3
  • 3Huang D-T,Wu S-H,Wang P-H. Cooperative spectrum sensing and locationing: A sparse Bayesian learning approach[CJI I GTC. Global Telecomrrrunications Conference. New York: GTC , 2010:1-5.
  • 4杨国鹏,周欣,余旭初.稀疏贝叶斯模型与相关向量机学习研究[J].计算机科学,2010,37(7):225-228. 被引量:21
  • 5Dikmen 0, F evotte C. Maximum marginal likelihood estimation for nonnegative dictionary learning[CJllICASSP. Acoustics, Speech and Signal Processing. Prague: ICASSP, 2011: 1992-1995.
  • 6朱翠涛,杨凡.基于变分稀疏贝叶斯学习的频谱检测方法[J].中南民族大学学报(自然科学版),2013,32(1):65-69. 被引量:3
  • 7Rappaport TS . Wireless Communications : Principles and Practice[M]. 2nd ed. PTR:Prentice Hall, 2002.
  • 8Yan Zhou, Kantarcioglu M. ,Thuraisingham B. Sparse Bayesian adversarial learning using Relevance Vector Machine ensembles[CJIIICDM. Data Mining. Brussels: ICDM, 2012: 1:ni-121 1.
  • 9Yamaguchi N. Variational Bayesian inference with automatic relevance determination for generative topographic mapping[CJIIISAIS. Soft Computing and Intelligent Systens and 13th International Symposium on Advanced Intelligent Systems. Kobe : ISAIS ,2012 :2124-2129.
  • 10Bishop C M, Tipping M E. Variational relevance vector machines[CJIICUAI. Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. New York:CUAI,2000: 46-53.

二级参考文献31

  • 1Shawe-Tsylor J,Cristianini N.Kernel Methods for Pattern A-nalysis[M].London:Cambridge University Press,2004:47-82.
  • 2Vapnik V N.The nature of statistical learning theory[M].Springer,1995.
  • 3Tipping M E.Sparse kernel principal component analysis[M].Advances in Neural Information Processing Systems.MIT Press,2001.
  • 4Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C] ∥Proceedings Fifth Annual Workshop on Computational Learning Theory.1992:144-152.
  • 5Bishop C M,Tipping M E.Variational relevance vector ma-chines[C] ∥Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence.Morgan Kaufmann,2000:46-53.
  • 6Tipping M E,Faul A.Fast marginal likelihood maximization for sparse Bayesian models[C] ∥Proceedings Ninth International Workshop on Artificial Intelligence and Statistics.Key West,Florida,2003.
  • 7Thayananthan A.Template-based Pose Estimation and Tracking of 3D Hand Motion[D].Department of Engineering,University of Cambridge,September 2005.
  • 8Silva C,Ribeiro B.Scaling Text Classification with Relevance Vector Machines[C] ∥IEEE International Conference on Systems,Man and Cybernetics.2006:4186 -4191.
  • 9Demir B,Erturk S.Hyperspectral Image Classification Using Relevance Vector Machines[J].Geoscience and Remote Sen-sing Letters,IEEE,2007:586-590.
  • 10Nikolaev N,Tino P.Sequential relevance vector machine lear-ning from time series[C] ∥IEEE International Joint Conference on Neural Networks.2005:1308-1313.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部