期刊文献+

基于H_∞优化设计分数阶PD~μ控制器

H_∞ Design with Fractional-Order PD~μ Controllers
下载PDF
导出
摘要 本文针对分数阶时滞系统,利用H∞优化理论,设计分数阶PDμ控制器。首先,给定微分阶次μ,利用图解稳定性准则确定并画出分数阶时滞系统的PDμ控制器在(Kp,Kd)参数平面上的稳定域。然后,在稳定域内计算出满足补灵敏度函数的H∞范数约束的控制器比例增益和微分增益,并确定H∞边界曲线。最后,通过改变H∞控制器的微分阶次,能得到H∞曲线与分数阶次μ之间的关系。 This article focuses on H∞ performance design for fractional-order systems with time-delay,using fractional-order proportional-derivative (PDμ) controllers.First,the stabilizing parameters region in proportional-derivative space of PDμ controller,for a fixed derivative-order,is determined in terms of a graphical stability criterion applicable to frac tional-order time-delay systems.Then,in the stabilizing region,the pairs of proportional and derivative gains of PDμ controller are calculated,it satisfies the H∞-norm constraint of complementary sensitivity function and defines the H∞ boundary curve for a range of frequencies.Finally,by changing the derivative-order of PDμ controller,the relationship between the H∞ curve and the derivative-order is obtained.Examples are followed to illustrate the design procedure.
出处 《自动化技术与应用》 2014年第3期11-15,共5页 Techniques of Automation and Applications
关键词 分数阶PDμ控制器 稳定域 补敏感函数 H∞优化 fractional-order PDμ controllers stabilizing regions complementary sensitivity function H∞-norm
  • 相关文献

参考文献5

二级参考文献30

  • 1B J Lune. Three-parameter tunable tilt-integral derivative (TID) controller [P]. US Patent US5371 670, 1994.
  • 2A Oustaloup, B Mathieu, P Lanusse. The CRONE control of resonant plants: application to a flexible transmission [J]. European Journal of Control, 1995, 1(2).
  • 3Podlubny I. Fractional-order systems and PI^hD^u-controllers [J]. IEEE Trans. Automat. Contr., 1999, 44: 208-214.
  • 4Podlubny I. Fractional Differential Equations [M]. San Diego, CA : academic, 1999.
  • 5H F Raynaudand, A Zergalnoh. State-space representation for fractional order controllers [J]. Automatica, 2000, 36: 1017-1021.
  • 6Ivo Petras. The fractional-order controllers: Methods for their synthesis and application [J]. Journal of Electrical Engineering, 1999,50(9/10): 284-288.
  • 7Chyi Hwang, Jeng-Fan Leu, Sun-Yuan Tsay. A Note on Time-Domain Simulation of Feedback Fractional-Order Systems [J]. IEEE Trans.Automat. Contr., 2002, 47:625-631.
  • 8Zeng Qing-Shan, Cao Guang-Yi, Zhu Xin-Jian. The effect of the fractional-order controller's orders variation on the fractional-order control systems [A]. Proc. 2002 International Conference, Machine Learning and Cybernetics'02 [C]. 2002, 1: 367-372.
  • 9M Nakagava, K Sorimachi. Basic characteristics of a fractance device [J]. IEICE Trans., Fund., 1992, E75-A(12): 1814-1818.
  • 10Wang Jifeng, Li Yuankai. Frequency Domain Analysis and Applications for Fractional-order control systems [A/OL]. Journal of Physics:Conference Series [C]. http://www.iop.org/EJ/journal/conf. 2005, 13: 268-273.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部