期刊文献+

压缩因子综合信息粒子群算法 被引量:4

Comprehensive Informed Particle Swarm Optimizer Based on Constrict Factor
下载PDF
导出
摘要 在群体智能算法中个体种群的多样性在进化后期逐渐消失,个体趋同性增加,因此粒子群算法的主要缺点是容易陷入局部最优值。提出了一种新的改进粒子群算法,该算法结合了压缩因子和综合信息策略,其中压缩因子可以平衡粒子群算法中的局部和全局搜索,综合信息可以较好地加强种群的多样性。改进后的粒子群算法与基本粒子群算法、自适应粒子群算法和压缩因子粒子群算法在7个测试函数上分别进行了精度对比测试、成功概率测试和收敛速度测试,结果表明新算法获得了较高的搜索精度和较快的收敛速度。 The diversity of swarm will be impaired in late period of evolution for a swarm intelligent algorithm and the convergence of each individual element is enhanced, so the major disadvantage of particle swarm optimizer is vulnerable to be trapped in the local optima. This paper proposes a new variant particle swarm optimizer which com-bines constrict factor and comprehensive informed strategy. The constrict factor can balance the global and local models, and comprehensive informed strategy can efficiently enhance the diversity of all particles. By comparing the standard particle swarm optimizer, adaptive particle swarm optimizer and particle swarm optimizer based on con-strict factor on 7 test functions with accuracy level, success rate and convergence velocity, the results show that the new algorithm can obtain a higher accurate level and faster convergence velocity.
作者 张成兴
出处 《计算机科学与探索》 CSCD 2014年第4期506-512,共7页 Journal of Frontiers of Computer Science and Technology
基金 教育部2012年度西部和边疆地区规划基金项目Grant No.12XJA910002~~
关键词 综合信息策略 压缩因子 粒子群算法 comprehensive informed constrict factor particle swarm optimizer
  • 相关文献

参考文献4

二级参考文献37

  • 1刘杰,金弟,杜惠君,刘大有.一种新的混合特征选择方法RRK[J].吉林大学学报(工学版),2009,39(2):419-423. 被引量:7
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3高岳林,任子晖.带有变异算子的自适应粒子群优化算法[J].计算机工程与应用,2007,43(25):43-47. 被引量:23
  • 4Kennedy J,Eberhart R C. Particle swarm optimization [C]//Proc ICNN'95. Piscataway, NJ ; IEEE Press, 1995 : 1 942 —1948.
  • 5Cabrera J C F. Handling constraints in particle swarmoptimization using a small population size [C]//Proc 6thMICAI. Aguascalientes, Mexico: IEEE Press, 2007: 41-51.
  • 6Pulido (j T,Coello C A C. A constraint-handling mechanismfor particle swarm optimization [C]//Proc CEC,04.Portland, USA: IEEE Press, 2004 : 1396 - 1403.
  • 7Efren M M, Coello C A C. A simple multimemberedevolution strategy to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computulion ,2005, 9(1) : 1 - 17.
  • 8Runanarsson T P,Yao X. Stochastic ranking for constrainedevolutionary optimization [J]. IEEE Transactiofis onEvolutionary Computation . 2000,4(3): 248 - 254.
  • 9Storn R, Price K. Differential evolution: A simple andefficient heuristic for global optimization over continuousspaces [J]. Journal of Global Optimization , 1997,11(4):341 - 359.
  • 10Ratnaweera A, Halgamuge S,Watson H. Self-organizinghierarchical particle swarm optimizer with time-varyingacceleration coefficients [J]. IEEE Tran.sacl ions onEvolutionary Computation ^ 2004 , 8(3) : 240 - 255.

共引文献60

同被引文献43

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部