摘要
设p是适合p≡1(mod6)的奇素数.根据二次Diophantine方程的性质,运用初等方法给出了方程x3-8=py2有适合gcd(x,y)=1的正整数解(x,y)的新的判别条件.当p≡1或7(mod24)时,该方程无解;当p≡13(mod24)时,该方程有解(x,y)=(3r2+2,3rs),其中s是适合ps2=3r4+6r2+1的正整数;当p≡19(mod24)时,该方程有解(x,y)=(r2+2,rs),其中s是适合ps2=r4+6r2+12的正整数.
Let p be an odd prime with p≡1(mod6) .By applying the properties of quadratic Diophantine equations and the elementary methods ,some new criterions for the positive integer solution (x ,y) of the equation x3 -8= p y2 w hen gcd(x ,y)=1 is given .If p≡1 or 7(mod 24) ,then the equation has no solu-tion .If p≡13(mod24) ,then the equation has the solution (x ,y)= (3 r2 +2 ,3 rs) ,w here s is a positive integer with ps2 =3r4 +6r2 +1 .If p≡19(mod24) ,then the equation has the solution (x ,y)= (r2 +2 , rs) ,where s is a positive integer with ps2 = r4 +6r2 +12 .
出处
《纺织高校基础科学学报》
CAS
2014年第1期38-41,共4页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(11071194)
陕西省教育厅科学计划项目(12JK0871)
杨凌职业技术学院科学研究基金计划项目(A2013027)