期刊文献+

广义高维Cochrane和的上界估计

On the upper bound estimate of the generalized high-dimensional Cochrane sum
下载PDF
导出
摘要 引入广义高维Cochrane和,利用超级Kloosterman和的性质以及Dirichlet L-函数的均值定理研究广义高维Cochrane和,从而给出了上界估计以及平方均值渐近公式. In order to introduce a generalized high-dimensional Cochrane sum ,by using properties of hy-per-Kloosterman sum and the mean value theorems of Dirichlet L-functions ,the upper bound estimate of the generalized high-dimensional Cochrane sum is studied ,and an interesting mean value formula is giv-en .
作者 邓俊兰
出处 《纺织高校基础科学学报》 CAS 2014年第1期58-64,共7页 Basic Sciences Journal of Textile Universities
基金 河南省自然科学基金资助项目(132300410372)
关键词 广义高维Cochrane和 超级Kloosterman 均值 generalized high-dimensional Cochrane sum hyper-Kloosterman sum mean value
  • 相关文献

参考文献7

  • 1XU Zhefeng,ZHANG Wenpeng. On the order of the high-dimensional Cochrane sum and its mean value[J]. J Number Theory,2006,117(1) :131-145.
  • 2LIU Huaning. A note on the upper bound estimate of high-dimensional Coehrane sums[J]. J Number Theory, 2007,125 (1) :7-13.
  • 3张天平,张文鹏.关于超级Cochrane和的混合型均值[J].数学年刊(A辑),2005,26(4):469-476. 被引量:2
  • 4ZHANG Wenpeng, YI Yuan. On the upper bound estimate of Cochrane sums[J]. Soochow J Math, 2002,28 (3):297- 304.
  • 5L WeinStein. The hyper-Kloosterman sum[J]. Enseign Math, 1981,27.. 29-40.
  • 6徐哲峰.张文鹏.Drichlet特征及其应用[M].北京:科学出版社,2008:21-22.
  • 7ZHANG Wenpeng, YI Yuan, HE Xiali. On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums[J]. J Number Theory, 2000,84(2) : 199-213.

二级参考文献9

  • 1Zhang Wenpeng, On the general Dedekind sums and one kind identities of Dirichlet L-functions [J], Acta Mathematica Sinica, 44(2001), 269-272.
  • 2Xie Min & Zhang Wenpeng, On the 2k-th mean value formula of general Dedekind sums [J], Acta Mathematica Sinica, 44(2001), 85-94.
  • 3Zhang Wenpeng, On a Cochrane sum and its hybrid mean value formula [J], Journal of Mathematical Analysis and Application, 267(2002), 89-96.
  • 4Zhang Wenpeng, On a Cochrane sum and its hybrid mean value formula (Ⅱ) [J], Journal of Mathematical Analysis and Application, 276(2002), 446-457.
  • 5Mordell, L. J., On a special polynomial congruence and exponential sums [A], in "Calcutta Math. Soc. Golden Jubilee Commemoration Volume," Part 1 [M], Calcutta Math.Soc., Calcutta, 1963, 29-32.
  • 6Bump, D., Duke, W., Hoffstein, J. & Iwaniec, H., An estimate for the Hecke eigenvalues of Maass forms [J]. Internat. Math. Res. Notices, 4(1992), 75-81.
  • 7Luo Wenzhi, Rudnick, Z. & Sarnak, P., On Selberg's eigenvalue conjecture [J], Geom.Funct. Anal., 5(1995), 387-401.
  • 8Smith, R. A., On n-dimensional Kloosterman sums [J], Journal of Number Theory,11(1979), 324-343.
  • 9Zhang Wenpeng, Yi Yuan & He Xiali, On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums [J], Journal of Number Theory, 84(2000),199-213.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部