期刊文献+

LMBP神经网络算法的改进 被引量:1

Improvement of LMBP Neural Network Algorithm
下载PDF
导出
摘要 针对LMBP神经网络算法的一些不足,如计算量大,收敛速度慢等特点,提出一些改进方法,即将求逆矩阵G-1移到等式左边,用直接分解法求解,极大地减少了计算量,并且采用变步长代替原来的固定步长.通过结合聚合釜的现场数据集进行故障诊断的仿真实验,结果表明所提改进LMBP故障诊断方法有效、可行. Aiming at a number of deficiencies on LMBP neural network algorithm, such as calculating capacity and slow convergence characteristics, this article made some improvements of methods, that is, the inverse of matrices G-1 moved to the left of the equation, with direct decomposition method for sol- ving, which greatly reduced the amount of calculation, and used variable step size instead of the original fixed step size. Through the combination of field data sets of polymerization reactor for the simulation experiments of fault diagnosis, the results showed that the improved fault diagnosis methods of LMBP were effective and feasible.
出处 《沈阳化工大学学报》 CAS 2014年第1期81-84,共4页 Journal of Shenyang University of Chemical Technology
关键词 LMBP神经网络 算法改进 聚合釜 故障诊断 LMBP neural network improvement of the algorithm reactor fault diagnosis
  • 相关文献

参考文献3

二级参考文献17

共引文献28

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部