摘要
This paper studies the existence and long time behavior of the solutions to the coupled Burgers-complex Ginzburg-Landau (Burgers-CGL) equations, which are derived from the nonlinear evolution of the coupled long-scale oscillatory and monotonic instabilities of a uniformly propagating combustion wave governed by a sequential chem- ical reaction, having two flame fronts corresponding to two reaction zones with a finite separation distance between them. This paper firstly shows the existence of the global solutions to these coupled equations via subtle transforms, delicate a priori estimates and a so-called continuity method, then prove the existence of the global attractor and establish the estimates of the upper bounds of Hausdorff and fractal dimensions for the attractor.
This paper studies the existence and long time behavior of the solutions to the coupled Burgers-complex Ginzburg-Landau (Burgers-CGL) equations, which are derived from the nonlinear evolution of the coupled long-scale oscillatory and monotonic instabilities of a uniformly propagating combustion wave governed by a sequential chem- ical reaction, having two flame fronts corresponding to two reaction zones with a finite separation distance between them. This paper firstly shows the existence of the global solutions to these coupled equations via subtle transforms, delicate a priori estimates and a so-called continuity method, then prove the existence of the global attractor and establish the estimates of the upper bounds of Hausdorff and fractal dimensions for the attractor.
基金
supported by the National Natural Science Foundation of China(No.11271141)