摘要
为了提高光流信息在人体动作识别系统中应用的效果和效率,提出一种累计方向-数量级光流梯度直方图的人体动作特征表示方法。该方法首先利用Horn-Schunck充流算法计算图像光流,然后将光流矢量按照不同的方向-数量级进行直方图统计,得到单帧图像的方向-数量级的光流梯度直方图,最后将单帧图像的直方图特征在时间维上进行累积来表示整个视频动作的特征。利用该特征在KTH动作视频库上进行动作识别测试,4个场景的混合测试得到了87.5%的平均正确识别率,验证了算法的有效性。
In order to improve the recognition rate and efficiency of optical flow in the human action recognition sys-tem, a novel method for human action representation based on the accumulated orientation-magnitude gradient his-tograms of the optical flow is proposed in this paper .First the image optical flow is computed , and then every flow vector is counted according to the orientation-magnitude to obtain orientation-magnitude histograms of single frame image.Finally information of the video sequence can be represented by accumulating orientation-magnitude histo-grams in time dimension .The proposed feature is evaluated on a standard database of human actions:KTH.The ex-periment conducted on the four scenes demonstrates that this algorithm is effective and achieves a correct recogni -tion rate of 87.5%with the KTH dataset .
出处
《智能系统学报》
CSCD
北大核心
2014年第1期104-108,共5页
CAAI Transactions on Intelligent Systems
基金
国家自然科学青年基金资助项目(61103123)