期刊文献+

累积方向-数量级光流梯度直方图的人体动作识别 被引量:4

Human action recognition based on accumulated orientation-magnitude histograms of optical flow
下载PDF
导出
摘要 为了提高光流信息在人体动作识别系统中应用的效果和效率,提出一种累计方向-数量级光流梯度直方图的人体动作特征表示方法。该方法首先利用Horn-Schunck充流算法计算图像光流,然后将光流矢量按照不同的方向-数量级进行直方图统计,得到单帧图像的方向-数量级的光流梯度直方图,最后将单帧图像的直方图特征在时间维上进行累积来表示整个视频动作的特征。利用该特征在KTH动作视频库上进行动作识别测试,4个场景的混合测试得到了87.5%的平均正确识别率,验证了算法的有效性。 In order to improve the recognition rate and efficiency of optical flow in the human action recognition sys-tem, a novel method for human action representation based on the accumulated orientation-magnitude gradient his-tograms of the optical flow is proposed in this paper .First the image optical flow is computed , and then every flow vector is counted according to the orientation-magnitude to obtain orientation-magnitude histograms of single frame image.Finally information of the video sequence can be represented by accumulating orientation-magnitude histo-grams in time dimension .The proposed feature is evaluated on a standard database of human actions:KTH.The ex-periment conducted on the four scenes demonstrates that this algorithm is effective and achieves a correct recogni -tion rate of 87.5%with the KTH dataset .
出处 《智能系统学报》 CSCD 北大核心 2014年第1期104-108,共5页 CAAI Transactions on Intelligent Systems
基金 国家自然科学青年基金资助项目(61103123)
关键词 人体动作识别 Horn-Schunck光流 方向-数量级直方图 梯度直方图 human action recognition Horn-Schunck optical flow orientation-magnitude histograms gradient histograms
  • 相关文献

参考文献12

  • 1BLANK M, GORELICK E, SHECHTMAN E, et al. Actions as space-time shapes [ C ]//Proceedings of the International Conference on Computer Vision. Beijing, China, 2005: 1395-1402.
  • 2GORELICK L, BLANK M, SHECHTMAN E, et al. Actions as Slmce4ime shapes[ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2007, 29 12): 2247- 2253.
  • 3YILMAZ A, SHAH M. A diffcrential geometric approach to representing the human actions[J]. Computer Vision and Image Understanding, 2008, 119(3) : 335-351.
  • 4I,APTEV I, LINDEBERG T. Space-time interest points [ C ]//Proceedings of the International Conference on Com- puter Vision. Nice, France, 2003: 432-439.
  • 5LAPTEV l, CAPUTO B, SCH[JLDT C, et al. Local veloci- ty-adapted motion events for spatio-temporal recognition[ J]. Computer Vision and linage Understanding, 2007, 108 (3) : 207-229.
  • 6OIKONOMOPOULOS A, PATRAS I, PANTIC M. Spatio- temporal salient points for visual recognition of human ac- tions[ J ]. IEEE Transactions on Systems Man and Cyhernet-ics--Part B: Cybernetics, 2006, 36(3): 710-719.
  • 7DANAFAR S, GHEISSARI N. Action recognition for sur- veillance applications using optic flow and SVM [ C ]//Pro- ceedings of the Asian Conference on Computer Vision. To- kyo, Japan, 2007: 457-466.
  • 8TRAN D, SOROKIN A. Human ac, tivity recognition with metric learning[ C ]//Proceedings of the European Confer- ence on Computer Vision. Marseille, France, 2008: 61-66.
  • 9ZHANG Ziming, HU Yiqun, CHAN Syin, et al. Motion context: a new representation tbr human action recognition [ C]//Proeeedings of the European Conference on Comput- er Vision. Marseillc, France, 2008: 817-829.
  • 10FAN Rongen, CHEN Paihsuen, LIN Chihjen. Working set seleetion using second order information for training SVM [J ]. Journal of Machine Learning Research, 2005, 6: 1889-1918.

同被引文献33

  • 1ANDREWS S,TSOCHANTARIDIS I,HOFMANN T. Supportvector machines for multiple.instance learning [J]. Advances inneural information processing systems,2002,15(2):561-568.
  • 2BOIMAN O,IRANI M. Detecting irregularities in images andin video [J]. International journal of computer vision,2007,74(1):17-31.
  • 3KE Y,SUKTHANKAR R,HEBERT M. Event detection incrowded videos [C].Proceedings of 2007 11th IEEE Interna.tional Conference on Computer Vision. Rio de Janeiro:IEEE,2007:1.8.
  • 4EFROS A A,BERG A C,MORI G,et al. Recognizing action ata distance [C].Proceedings of 2013 Ninth IEEE InternationalConference on Computer Vision. US:IEEE,2013:726.733.
  • 5WEINLAND D,RONFARD R,BOYER E. A survey of vision.based methods for action representation, segmentation andrecognition [J]. Computer vision and image understanding,2011,115(2):224-241.
  • 6DALAL N,TRIGGS B. Histograms of oriented gradients forhuman detection [C].Proceedings of 2005 IEEE Computer So.ciety Conference on Computer Vision and Pattern Recogni.tion. San Diego:IEEE,2005:886.893.
  • 7BOSER B E,GUYON I M,VAPNIK V N. A training algo.rithm for optimal margin classifiers [C].Proceedings of theFifth Annual Workshop on Computational Learning Theory.US:ACM,2008:144.152.
  • 8Laptev I.On Space-Time Interest Points[J].International Journal of Computer Vision,2005,64(2-3):107-123.
  • 9Dollar P,Rabaud V,Cottrell G,et al.Behavior recognition via sparse spatio-temporal features[C]//Visual Surveillance and Performance E-valuation of Tracking and Surveillance,IEEE International Workshop on.IEEE,2005:65-72.
  • 10Bregonzio M,Gong S G,Xiang T.Recognising action as clouds of space-time interest points[C]//IEEE Conference on Computer Vision&Pattern Recognition.IEEE,2009:1948-1955.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部