期刊文献+

面板数据模型的惩罚似然变量选择方法研究 被引量:7

Research on Variable Selection Method of Penalized Likelihood for Panel Data Model
下载PDF
导出
摘要 本文针对面板数据模型的惩罚似然变量选择问题,比较研究了Lasso、Adaptive Lasso、Bridge和SCAD四种罚函数的渐近性质。模拟结果验证了在面板数据情况下,Adaptive Lasso、Bridge和SCAD的Oracle性质同样成立,且它们在变量选择准确性、参数估计精度和模型预测精度三方面的效果都优于Lasso。为了合理选取调整参数,本文考虑AIC、BIC、GCV、Cp四种准则,通过模拟显示BIC和GCV的表现通常要优于AIC和Cp。作为实证研究,本文在面板数据框架下应用惩罚似然方法对上市公司市盈率影响因素进行选择,以期对股市投资者做出理性投资决策有一定指导价值。 This paper focuses on the methods of penalized likelihood variable selection for the panel data model, and discusses and compares the asymptotic properties of Lasso, Adaptive Lasso, Bridge and SCAD. Through simulations, Adaptive Lasso, Bridge and SCAD are confirmed to have the oracle property and perform better than Lasso on variable selection accuracy, parameters estimation precision as well as model prediction precision. In addition, to properly select the tuning parameters, we consider the criteria AIC, BIC, GCV and Cp and indicate by simulations that tuning based on BIC or GCV in general do better than based on AIC or Cp. As an empirical study, we apply the penalized likelihood methods to selection of the influencing factors on price-earnings ratio of listed companies under the framework of panel data, in order to provide some references to stock investors in making rational investment decisions.
作者 李扬 曾宪斌
出处 《统计研究》 CSSCI 北大核心 2014年第3期83-89,共7页 Statistical Research
基金 国家自然科学基金青年项目“预测模型的结构化变量选择方法研究”(71301162) 国家社会科学基金“大数据的高维变量选择方法及其应用研究”(13CTJ001) 中国人民大学应用统计科学研究中心自主项目“高维异质性数据的特征选择方法研究”资助
关键词 面板数据 变量选择 惩罚似然 调整参数 Panel Data Variable Selection Penalized Likelihood Lasso Tuning Parameter
  • 相关文献

参考文献16

  • 1Fitzmaurice G M, Laird N M, Ware J H. Applied longitudinal analysis[ M]. John Wiley & Sons, 2012.
  • 2Liu H, et al. PRESS model selection in repeated measures data[ J]. Computational statistics & data analysis, 1999, 30(2) : 169 - 184.
  • 3曲婷,王静.基于Lasso方法的平衡纵向数据模型变量选择[J].黑龙江大学自然科学学报,2012,29(6):715-722. 被引量:4
  • 4Tibshirani R. Regression shrinkage and selection via the lasso[ J ] Journal of the Royal Statistical Society. Series B (Methodological) 1996, 58(1): 267-288.
  • 5Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties [ J ]. Journal of the American Statistical Association, 2001, 96(456): 1348- 1360.
  • 6Knight K, Fu W. Asymptotics for lasso-type estimators[ J]. Annals of Statistics, 2000, 28 (5) : 1356 - 1378.
  • 7Zou H. The adaptive lasso and its oracle properties [ J ]. Journal of the American statistical association, 2006, 101 (476): 1418-1429.
  • 8Fan J, Peng H. Nonconcave penalized likelihood with a diverging number of parameters [ J ]. The Annals of Statistics, 2004, 32 ( 3 ) : 928 -961.
  • 9Huang J, Horowitz J L, Ma S. Asymptotic properties of bridge estimators in sparse high-dimensional regression models [ J ]. The Annals of Statistics, 2008, 36 (2) : 587 - 613.
  • 10Huang J, Ma S, Zhang C H. i Adaptive Lasso for sparse high- dimensional regression models [ J ]. Statistica Sinica, 2008, 18 (4) : 1603 - 1618.

二级参考文献74

  • 1杨洁,郑军,承龙.独立董事制度与公司绩效[J].经济学动态,2004(12):57-59. 被引量:19
  • 2白重恩,刘俏,陆洲,宋敏,张俊喜.中国上市公司治理结构的实证研究[J].经济研究,2005,40(2):81-91. 被引量:1331
  • 3刘玉敏.我国上市公司董事会效率与公司绩效的实证研究[J].南开管理评论,2006,9(1):84-90. 被引量:57
  • 4王大荣,张忠占.联合广义线性模型中的变量选择[J].统计研究,2007,24(4):37-40. 被引量:2
  • 5Bai, C., Q. Liu, J. Lu, F. Song, and J. Zhang, 2004, "Corporate governance and market valuation in China", Journal of Comparative Economics, 32,599-616.
  • 6Bhagat, S, and B. Black, 1999, "The Uncertain Relationship between Board Composition and Firm Performance",Business Lawyer 54,921 - 963.
  • 7Bhagat, S. and B. Black, 2001, "The non- correlation between board independence and long term firm performance",Journal of Corporation Law, 27, 231 -274.
  • 8Boyd B. K., 1995, "CEO Duality and Firm Performance: A Contingency Model", Strategic Management Journal, 16,301-312.
  • 9Brown, W. O. and M. T. Maloney, 1998, "Exit, voice, and the role of corporate directors: Evidence from acquisition performance". Working paper, Claremont McKenna College.
  • 10Coles, J. L., N. D. Daniel, and L. Naveen, 2005, "Boards: Does One Size Fit All? " Arizona State University working paper.

同被引文献46

  • 1林舒杨,李翠华,江弋,林琛,邹权.不平衡数据的降采样方法研究[J].计算机研究与发展,2011,48(S3):47-53. 被引量:31
  • 2康朝锋,郑振龙.外汇结构性存款的定价[J].国际金融研究,2005(5):45-49. 被引量:16
  • 3徐筱凤,李寿喜.中国企业市盈率:理论分析与经验证据[J].世界经济文汇,2005(4):172-178. 被引量:8
  • 4刘开瑞.财务预警分析指标[J].生产力研究,2007(4):138-141. 被引量:21
  • 5Tibshirani tL Regression Shrinkage and Selection Via the Lasso l-J]. Journal of the Royal Statistical Society (Series B), 1996(1).
  • 6Li Y, Qin Y, Xie Y, Tian F. Grouped Penalization Estimation of Osteoporosis Data in Traditional Chinese Medicine I-J]. Journal of Applied Statistics, 2013(4).
  • 7Chawla N V, t3owyer K W, Hall L O, Kegelmeyer W P. SMOTE: Synthetic Minority Over-Sampling Technique [J]. Journal of Artificial Intelligence Research,2002(16).
  • 8Ma S, Huang J. Regularized ROC Method for Disease Classification and Biomarker Selection with Mieroarray Data [J]. Bioinformaties, 2005(24).
  • 9Song X, Ma S. Penalized Variable Selection with U-Estimates [J]. Journal of Nonparametric Statistics, 2010(4).
  • 10Ma S, Huang J. Combining Multiple Markers for Classification Using ROC [J]. Biometrics, 2007(3).

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部