期刊文献+

Banach空间上的光滑变分原理

Banach Space on the Smooth Variational Principle
下载PDF
导出
摘要 光滑变分原理的意义不只在于优化理论方面,它在控制理论,不动点理论与大范围的分析领域有非常广泛的应用,Borwein-Preiss光滑变分原理也是其应用非常广泛的定理,但应用条件较苛刻,为解决此问题,把Borwein-Preiss光滑变分原理推广到希尔伯特空间以及巴拿赫空间中更一般的形式。 This paper mainly consider the smooth variational principle,variational principle singnificance lies not only in its optimization theory,control theory,fixed point theory and analysis of large scale is also very wide application, Borwein-Preiss smooth variational principle is used widely, but the application of relatively harsh conditions, in order to solve this problem, the Borwein-Preiss smooth become more general form principle is extended to Hilbert spaces and Banach spaces.
出处 《兴义民族师范学院学报》 2013年第6期100-102,共3页 Journal of Minzu Normal University of Xingyi
关键词 凸下半连续 光滑变分原理 强最小 BANACH空间 convex lower semi continuous, smooth variational principle, strong minimum, Banach space
  • 相关文献

参考文献7

  • 1Robert R.Phelps, Convex Functions, Monotone Operators and Differentiability Spring-verlag Berin Heidelberg,1989.
  • 2Jonathan M.Borwein and Qiji J.Zhu. Techniques of Variational Analysis. [M].Springer, 2005.
  • 3Jean-Pierre Aubin,optima and equilibria [M].Spring-verlag Berin Heidelberg,1993.
  • 4郭玉霞.Ekeland变分原理的推广及其应用[J].系统科学与数学,2003,23(1):94-99. 被引量:4
  • 5Tomonari suzuki, The strong Ekeland variational principle, [J].Math.Anal.Appl.320,2006.
  • 6SunJinli ,SunJinxian ,A generalization of Caristi's fixed point theorem and its applications[J].数学研究和评论,2005.
  • 7丘京辉.σ半凸性与Ekeland变分原理[J].数学学报(中文版),2004,47(2):251-258. 被引量:4

二级参考文献13

  • 1钟承奎.Ekeland变分原理的推广及其应用[J].数学学报(中文版),1997,40(2):185-190. 被引量:5
  • 2Ekeland I., On the variational principle, J. Math. Anal. Appl., 1974, 47: 324-353.
  • 3Phelps R. R., Convex Functions, Montone operators and differentiability, Berlin, Heidelberg: Springer-Verlag,1989.
  • 4Horvath J., Topological vector spaces and distributions, Massachusetts: Addison-Wesley, 1966.
  • 5Zeidler E., Nonlinear functional analysis and its applications Ⅲ, variational methods and optimization, New York: Springer-Verlag, 1985.
  • 6Perez Carreras P., Bonet J., Barrelled locally convex spaces, Amstrdam: North-Holland, 1987.
  • 7Qiu J. H., Local completeness and dual local quasi-completeness, Proc. Amer. Maih. Soc., 2001, 129:1419-1425.
  • 8Saxon S. A., Sanchez Ruiz L. M., Dual local completeness, Proc. Amer. Math. Soc., 1997, 125: 1063-1070.
  • 9Rode G., Superkonvexe analysis, Arch. Math., 1980, 34: 452-462.
  • 10Kgnig H., Theory and applications of superconvex spaces, In: Aspects of Positivity in Functional Analysis(eds. Nagel R., Schlotterbeck U., Wolff M. P. H.), Amsterdam: North-Holland, 1986, 79-118.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部