期刊文献+

掺杂SnO_2/Cu新型纳米复合材料的制备 被引量:1

Fabrication of doped SnO_2/Cu novel nano-composites
下载PDF
导出
摘要 分别采用溶胶-凝胶、粉末冶金工艺制备了TiO2掺杂纳米SnO2粉体、掺杂SnO2/Cu纳米复合材料.采用XRD对纳米SnO2的掺杂效果进行了评估,并分别采用TEM、SEM对掺杂SnO2纳米颗粒及SnO2/Cu纳米复合材料的微观形貌进行了观察,最后对复合材料的硬度与电导率进行了测量.结果表明通过本文所述工艺可成功实现TiO2对纳米SnO2的掺杂,所得掺杂SnO2颗粒为圆球形,粒径约为10nm.掺杂SnO2/Cu纳米复合材料拥有优良的导电性能及显著提高的硬度.随掺杂SnO2含量的增加,复合材料的电导率下降,而硬度增加.复压复烧及冷变形工艺均可明显提高复合材料的硬度与电导率. SnO2 nano powder doped by TiO2, doped SnOJCu nano-composite were respectively fabricated by sol-gel, powder metallurgy methods, respectively. The doping quality of the nano SnO2 powder was evaluated by XRD technique, and the morphologies of nano SnO2 powder, doped SnOJCu composite were observed by TEM and SEM respectively. Finally, the hardness and electrical conductivity of the composites were tested. The results show that nano SnO2 can be successfully doped by TiO2 using the present method. The resultant doped SnO2 particles are spherical in shape, and about 10 nm in diameter. The doped SnOJCu composites present excellent electrical conductivity and significantly enh- anced hardness. With increasing the content of doped SnO2, the electrical conductivity of the composites decreases, while the hardness increases. Both the repressing, re-sintering process and the cold deformation process can obviously increase the electrical conductivity and the hardness of the composites.
出处 《河北工业大学学报》 CAS 北大核心 2014年第1期65-69,共5页 Journal of Hebei University of Technology
基金 河北省自然科学基金(E2012202015) 河北工业大学优秀青年科技创新基金(2011007)
关键词 铜基纳米复合材料 溶胶 凝胶 粉末冶金 电导率 硬度 Cu-based nano-composite sol-gel powder metallurgy electrical conductivity hardness
  • 相关文献

参考文献14

  • 1崔浩,谢明,杨有才,陈永泰,刘满门,张勇甲,刘捷.铜基新型电接触材料电性能分析[J].电工材料,2009(3):8-11. 被引量:7
  • 2Shabana Y M, Karihaloo B L, Zhu H X, et al. Influence of processing defects on the measured properties of Cu-Al:O: composites: A forensic investigation [J]. Composites: Part A, 2013, 46: 140-146.
  • 3Zawrah M F, Hamdia A Zayed, Raghieba A Essawy, et al. Preparation by mechanical alloying, characterization and sintering of Cu-20 wt. % Al203nanocomposites [J]. MaterDesi, 2013, 46: 485-490.
  • 4Nasiri H, Vahdati Khaki J, et al. One-step fabrication of Cu-A1203 nanocomposite via solution combustion synthesis route [J]. J Alloy Compd, 2011, 509.. 5305-5308.
  • 5孙财新,王珏,严萍.两种铜基触头材料的电弧侵蚀性能研究[J].高压电器,2012,48(1):82-89. 被引量:19
  • 6Ding J, Zhao N Q, Shi C S. In situ formation of Cu-ZrO2 composites by chemical routes [J]. J Alloy Compd, 2006, 425: 390-394. 84.
  • 7Wang Q Z, Cui C X, Lu D M, et al. Fabrication and properties of a novel ZnO-Cu composite [J]. J Mater Proc Tech, 2010, 210: 497-503.
  • 8Fahimeh Shojaeepour, Parvin Abachi, Kazem Purazrang, et al. Production and properties ofCu/Cr20: nano-composites [J]. Powder Tech, 2012, 222: 80-.
  • 9Tu J P, Wang N Y, Yang Y Z, et al. Preparation and properties of TiB: nanoparticle reinforced copper matrix composites by in situ processing [J]. MaterLett, 2002, 52.- 448-452.
  • 10李恒,杨志明.粉末元素掺杂对AgSnO_2(10)触头材料的影响[J].电工材料,2001(3):18-21. 被引量:9

二级参考文献42

共引文献59

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部