摘要
该文结合神经网络来研究城市轨道交通中短期客流预测问题。设计出了基于自回归神经网络的轨道交通客流预测模型、模型描述及其模型训练算法。通过matlab仿真实验来验证预测模型的性能,优于将最小二乘支持向量机与离散一维Daub4小波分析结合起来预测效果。
This article is to study the short term passenger flow prediction based on neural network in city rail transit.And the pas-senger flow prediction model based on recurrent nerual network in city rail transit,mathematical descripition and training algo-rithm of the model is designed.and the author testifies the performance of prediction mode according to Matlab simulation exper-iment,result show that the passenger flow prediction method based on recurrent nerual network has higher accuracy than wave-let analysis based SVM in short term passenger flow prediction for city rail transit.
作者
滕明鑫
TENG Min-xin (Chongqing Metro Group Co. Ltd.,Chongqing 400042, China)
出处
《电脑知识与技术》
2014年第2期809-812,共4页
Computer Knowledge and Technology
关键词
神经网络
轨道交通
客流预测
neural network
rail transit
passenger flow prediction