期刊文献+

NSGA-II与MOPSO算法的多工序车削节能优化比较分析 被引量:2

Analysis and Compare of Multi-pass Turning Energy Saving Optimization Applying NSGA-II and MOPSO Algorithm
下载PDF
导出
摘要 在实际加工约束条件下,建立以表面粗糙度和能量消耗为目标的多工序车削优化模型的切削参数优化选择十分必要。运用NSGA-II算法和MOPSO算法对多工序车削模型进行优化比较。优化实例表明:NSGA-II算法能够获得了比MOPSO算法更优的表面粗糙度、能量消耗的Pareto最优解集以及相应的粗、精切削参数,为多工序车削参数优化选择提供了依据。 Under condition of practical turning constraints, a bi-objective muhi-pass turning optimization model, based on sur- face roughness and energy consumption, was very necessary for the optimization of machining parameters. The Non-dominated Sorting Genetic Algorithm-II (NSGA-Ⅱ) and the Multi-objective Particle Swarm Optimization (MOPSO) were applied to the multi-pass turning optimization model. Example of optimization shows that the Pareto-optimal solutions set for surface roughness and energy consumption, and the corresponding machining parameters both precise and rough obtained by the NSGA-Ⅱ Algorithm are more excellent than exam- ple results of MOPSO, which provides practical guides for selection optimization of machining parameters in multi-pass NC turning.
作者 胡成龙
出处 《机床与液压》 北大核心 2014年第7期70-74,8,共6页 Machine Tool & Hydraulics
关键词 表面粗糙度 能量消耗 多工序车削优化 NSGA-Ⅱ算法 MOPSO算法 Surface roughness Energy consumption Multi-pass turning optimization NSGA-Ⅱ Algorithm MOPSO Algorithm
  • 相关文献

参考文献11

  • 1CHEN M C, TSAI D M, A Simulated Annealing Approach for Optimization of Multi-pass Turning Operations [ J ]. INT. J. PROD. RES, 1996,34 ( 10 ) :2803 - 2825.
  • 2CHEN M C. Optimization Machining Economics Models of Turn- ing Operations Using the Scatter Search Approach[ J], Interna- tional Journal of Production Research ,2004,42:2611 - 2625.
  • 3COELLO, C A C. PULIDO, G T, LECHUGA, M. S. Handling Mul- tiple Objectives with Particle swarm optimizations [ J ]. Evolution Computation, IEEE Transactions oi1,2004,8 (3) :256 - 279.
  • 4DEB K, PRATAP A, AGANRWAL S, et al. A Fast and Elitist Multi-objective Genetic Algorithm : NSGA-I1 [ J 1. IEEE Transac- tions on Evolutionary Compution ,2002,6 (2) : 182 - 197.
  • 5陈青艳,胡成龙,焦红卫.多工序车削的自适应搜索非支配排序遗传算法[J].机械设计与制造,2013(7):119-122. 被引量:9
  • 6陈青艳,廖传林,胡成龙.非支配排序最优保留遗传算法的低成本车削[J].机床与液压,2013,41(21):47-52. 被引量:3
  • 7DATYA R, MAJUMDER A. Optimization of Turning Process Pa- rameters Using Multi-objective Evolutionary Algorithm [ J ]. IEEE longress on Evolutionary lomputation,2010,18/23:1 -6.
  • 8YANG S H, NATARJAN U, Multi-objective Optimization of Cut- ting Parameters in Turning Process Using Differential Evolution and Non-dominated Sorting Genetic Algorithm-II Approaches [ J]. Int. J. Adv. Manuf. Techno1,2010,49:773 -784.
  • 9陈青艳,胡成龙,杜军.加工精度和金属切除率的精车切削优化[J].组合机床与自动化加工技术,2013(3):111-114. 被引量:16
  • 10SHIN Y C, JOO Y S. Optimization of Machining Conditions with Practical Constraints [ J ]. INT. J. PROD. RES, 1992,30 (12) :2907 -2919.

二级参考文献39

  • 1潘敏强,刘亚俊,汤勇.车削加工中切削用量的分层多目标最优化模型[J].工具技术,2005,39(8):29-33. 被引量:11
  • 2陈桦,赵海霞.基于线性目标规划的切削参数多目标优化模型[J].西安工业大学学报,2007,27(1):24-28. 被引量:4
  • 3周泽华.金属切削原理[M].上海:上海科学技术出版社,1994.
  • 4金属切削理论与实践编委会.金属切削理论与实践[M].北京:北京出版社,1985.
  • 5孟少农.机械加工工艺手册[M].北京:机械工业出版社,2006.
  • 6叶迎春 王树斌.基于线性目标规划的切削参数多目标优化.科技信息,2008,22:556-558.
  • 7K. Vijayakumar, G. Prabhaharan, P. Asokan, R. Sara- vanan. Optimization of multi-pass turning operations using ant colony system [ J ]. International Journal of Machine Tools & Manufacture, 2003,4 (43) : 1633 - 1639.
  • 8Kalyanmoy Deb, Amrit Pratap. A Fast and Elitist Multi-ob- jective Genetic Algorithm: NSGA-Ⅱ[ J]. IEEE Transactions on Evolutionary Computation, 2002,6 ( 2 ) : 182 - 197.
  • 9Abdul|ah Konak David W. Coit, Alice E. Smith Multi-ob- jective optimization using genetic algorithms[ J]. Reliability Engineering and System Safety 2006,91 (9) :992 - 1007.
  • 10Coello, C. A. C. ; Pulido, G. T. ; Lechuga, M.S. Handling multiple objectives with particle swarm optimizations[ J ]. E- volution Computation, IEEE Transactions on. 2004,8 ( 3 ) : 256 - 279.

共引文献17

同被引文献8

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部