期刊文献+

BP神经网络在油液污染与磨损预测中的应用 被引量:2

Application of BP Neural Network in Oil Pollution and Wear Prediction
下载PDF
导出
摘要 针对传统BP算法存在的不足进行改进,采用共轭梯度法与Levenberg-Marquardt法对BP神经网络进行优化;通过实际数据进行预处理、建模分析,对比传统BP神经网络和经过优化后BP神经网络,证明了优化后的神经网络在油品污染与磨损的预测方面具有更好的泛化能力。 Aimed for improvement of the shortcomings existed in the traditional BP algorithm, the BP neural network was opti- mized by using conjugate gradient method and Levenberg-Marquardt method. Through the actual data pre-processing, modeling and a- nalysis, the traditional BP neural network and optimized BP neural networks were compared. It is proved that the optimized neural net- work has better generalization ability in the aspect of oil pollution and prediction of the wear.
出处 《机床与液压》 北大核心 2014年第7期163-166,共4页 Machine Tool & Hydraulics
基金 中国机械工业集团公司重大装备油液在线监测与智能诊断系统的研制(SINOMACH 11科90-24)
关键词 BP神经网络 算法改进 污染指标建模 预测分析 BP neural network Algorithm Pollution indicators modeling Predictive analysis
  • 相关文献

参考文献6

二级参考文献21

  • 1徐胜祥,贺立源,黄魏,陈杰.人工神经网络在柑橘生产专家系统中的应用[J].计算机应用研究,2006,23(2):138-141. 被引量:10
  • 2彭滔,汪鲁才,吴桂清,张颖.一种改进的神经网络机械故障诊断专家系统[J].计算机工程与应用,2007,43(1):232-234. 被引量:9
  • 3杨晓红,刘乐善.用遗传算法优化神经网络结构[J].计算机应用与软件,1997,14(3):59-65. 被引量:18
  • 4Rumelhart D E,McClelland J L. Parallel distributed processing. MA:MIT press,Cambridge, 1986,1(2):125-187.
  • 5Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation in Parallel Distributed Processing. Rumelhart D E and McClelland J L, Eds. Cambridge, MA: MIT press,1986. 318-362.
  • 6Medsker T. Neural network simulation environments. Massachusetts : Kluwer Academic Publishers, 1993.212-325.
  • 7William C Carpenter,Marcerry E Hoffman. Guideline for the selection of network architecture. Artificial Intelligence for Engineering Design analysis and Manufacturing. 1997,11 (5) :395-408.
  • 8Hecht Nielsen R. Counter propagation Networks.Applied Optics, 1987,26(12):4979-4984.
  • 9Lippmann R P. An introduction to computer with neural nets. IEEE ASSP Magazine, 1987 (4) : 4-22.
  • 10Martinez AM, Kak AC. PCA versus LDA. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011,23(2):228- 233.

共引文献50

同被引文献67

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部