摘要
针对传统BP算法存在的不足进行改进,采用共轭梯度法与Levenberg-Marquardt法对BP神经网络进行优化;通过实际数据进行预处理、建模分析,对比传统BP神经网络和经过优化后BP神经网络,证明了优化后的神经网络在油品污染与磨损的预测方面具有更好的泛化能力。
Aimed for improvement of the shortcomings existed in the traditional BP algorithm, the BP neural network was opti- mized by using conjugate gradient method and Levenberg-Marquardt method. Through the actual data pre-processing, modeling and a- nalysis, the traditional BP neural network and optimized BP neural networks were compared. It is proved that the optimized neural net- work has better generalization ability in the aspect of oil pollution and prediction of the wear.
出处
《机床与液压》
北大核心
2014年第7期163-166,共4页
Machine Tool & Hydraulics
基金
中国机械工业集团公司重大装备油液在线监测与智能诊断系统的研制(SINOMACH 11科90-24)
关键词
BP神经网络
算法改进
污染指标建模
预测分析
BP neural network
Algorithm
Pollution indicators modeling
Predictive analysis