期刊文献+

时滞在具有Ivlev型功能反应函数的捕食者-食饵扩散系统中的作用 被引量:3

The Effect of Delay on a Diffusive Predator-Prey System with Ivlev-Type Functional Response
下载PDF
导出
摘要 该文研究了时滞对一个带Neumann边值的捕食者-食饵的反应扩散系统的影响.通过对特征根的分析,讨论了非负平衡解的稳定性和Hopf分支的存在性.应用规范型方法和中心流形理论,文章讨论了Hopf分支周期解的稳定性和分支方向。 A delayed diffusive predator-prey system with Ivlev-type predator functional re- sponse subject to Neumann boundary conditions is considered. The stability of nonnegative equilibria and existence of Hopf bifurcation are obtained by analyzing the distribution of the eigenvalues. By the theory of normal form and center manifold, an explicit algorithm for de- termining the stability and direction of periodic solution bifurcating from Hopf bifurcation is derived.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第2期234-250,共17页 Acta Mathematica Scientia
基金 国家自然科学基金(11031002 11201096) 教育部高校博士点基金(20122302110044)资助
关键词 捕食者-食饵 时滞 Ivlev型功能反应项 HOPF分支 周期解 Prey-predator Delay Ivlev-type functional response Hopf bifurcation Periodicsolutions.
  • 相关文献

参考文献39

  • 1Chen S, Shi J, Wei J. The effect of delay on a diffusive predator-prey system with Holling type-II predator functional response. Communication on Pure and Applied Analysis, 2013, 12:481-501.
  • 2Faria T. Normal forms and Hopf bifurcation for partial differntial equations with delays. Trans Amer Math Soc, 2000, 352:2217-2238.
  • 3Faria T. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J Math Anal Appl, 2001, 254:433-463.
  • 4Faria T, Magalhes L T. Normal forms for retarded functional differntial equations with parameters and applications to Hopf bifurcation. J Differential Equations, 1995, 122:181-200.
  • 5Faria T, Magalhes L T. Normal forms for retarded functional differntial equations and applications to Bogdanov-Takens singularity. J Differential Equations, 1995, 122:201 224.
  • 6Garvie M R. Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. Bulletin of Mathematical Biology, 2007, 69:931-956.
  • 7Goodwin B C. Temporal Organzization in Cells. London and New York: Academic Press, 1963.
  • 8Hale J K. Theory of Functinal Differentail Equations. Berlin: Springer-Verlag, 1977.
  • 9Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981.
  • 10o- v , v _ Hutchinson G E. Circular causal systems in ecology. Ann N Y Acad Sci, 1948, 50:221-246.

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部