期刊文献+

Adams谱序列上的非平凡乘积b_0k_0δ_(s+4) 被引量:1

Non-Triviality of the Product b_0k_0δ_(s+4) in the Adams Spectral Sequence
下载PDF
导出
摘要 主要用May谱序列证明了非平凡的乘积b_0k_0δ_(s+4)∈Ext_A^(s+8,t)(Z_p,Z_p),其中p是大于等于7的素数,0≤s<p-4,q=2(p-1),t=(s+4)p^3q+(s+3)p^2q+(s+5)pq+(s+2)q+s. In this paper, we make use of the modified May spectral sequence to prove the nontriviality of the product b0k0δs+4∈ExtsA^s+8,t(Zp,Zp),where p≥7 is a prime ,0≤s〈p-4,q=2(p-1),t=(s+4)p3q+(s+3)p2q+(s+5)pq+(s+2)q+s.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第2期274-282,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11261062,11071125,11171161) 教育部新世纪优秀人才支持计划 教育部留学回国人员科研启动基金的资助
关键词 ADAMS谱序列 MAY谱序列 球面稳定同伦群 ADAMS谱序列 MAY谱序列 球面稳定同伦群 Adams spectral sequence May spectral sequence Stable homotopy groups ofspheres.
  • 相关文献

参考文献7

  • 1Adams J F. Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974.
  • 2Liulevicius A. The factorizations of cyclic reduced powers by secondary cohomology operations. Mem Amer Math Soc, 1962, 42:112-112.
  • 3Aikawa T. 3-DimensionM cohomology of the mod p Steenrod algebra. Math Scand, 1980, 4T: 91-115.
  • 4Wang Xiangjun, Zheng Qibing. The convergence of &!n)hohk. Sci China Ser A, 1998, 41:622-628.
  • 5Liu Xiugui, Zhao Hao. On a product in the classical Adams spectral sequence. Proc Amer Math Soc, 2009, 137(7): 2489-2496.
  • 6Zhong Linan, Piao Yongjie. A nontrivial product in the May spectral sequence. Journal of mathematical research and Exposition, 2011, 31(2): 359-365.
  • 7Ravenel D C. Complex Cobordism and Stable Homotopy Groups of Spheres. Orlando: Academic Press, 1986.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部