期刊文献+

基于尺度中心路径的求解SCLP的非单调光滑牛顿算法

Non-Monotone Smoothing Newton Algorithm for SCLP Based on a Scaled Central Path
下载PDF
导出
摘要 基于CHKS光滑函数的修改性版本,该文提出了一个带有尺度中心路径的求解对称锥线性规划(SCLP)的非单调光滑牛顿算法.通过应用欧氏若当代数理论,在适当的假设下,证明了该算法是全局收敛和超线性收敛的.数值结果表明了算法的有效性. Bused on a modified version of the Chen-Harker-Kanzow-Smale (CHKS) smoothing function, this paper investigates a non-monotone smoothing Newton algorithm with a scaled central path for solving linear programming over symmetric cones (SCLP). By using the theory of Euclidean Jordan algebras, we show that the proposed algorithm is globally and locally superlinearly convergent under suitable assumptions. Some preliminary numerical results is shown that our algorithm proposed is promising.
作者 倪铁 刘晓红
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第2期378-392,共15页 Acta Mathematica Scientia
关键词 线性规划 对称锥 欧氏若当代数 光滑算法 尺度中心路径 非单调线搜索 Linear programming Symmetric cone Euclidean Jordan algebra Smoothingalgorithm Scaled central path Non-monotone line search.
  • 相关文献

参考文献2

二级参考文献40

  • 1K. C. Toh, M. J. Todd, and R. H. Tfitfincii, SDPT3 - A Matlab software package for semidefinite programming, Optim. Methods Softw., 1999, 11: 545-581.
  • 2Z. H. Huang and H. Wang, Smoothing-type algorithm for solving linear programs by using an augmented complementarity problem, Appl. Math. Comput., 2006, 177: 330-345.
  • 3F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM J. Optim., 1995, 5: 13-51.
  • 4L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity, 1997, 1: 331- 357.
  • 5L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math., 1997, 86: 149-175.
  • 6M. S. Gowda, R. Sznajder, and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl., 2004, 393: 203-232.
  • 7Z. H. Huang and T. Ni, Smoothing algorithms for complementarity problems over symmetric cones, Comput. Optirn. Appl., 2010, 45: 557-579.
  • 8L. C. Kong, J. Sun, and N. H. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems, SIAM J. Optim., 2008, 19: 1028-1047.
  • 9D. Sun and J. Sun, Lowner's operator and spectral functions in Euclidean Jordan algebras, Math. Oper. Res., 2008, 33: 421-445.
  • 10S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithms to symmetric cones, Math. Program., 2003, 96: 409-438.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部