摘要
基于CHKS光滑函数的修改性版本,该文提出了一个带有尺度中心路径的求解对称锥线性规划(SCLP)的非单调光滑牛顿算法.通过应用欧氏若当代数理论,在适当的假设下,证明了该算法是全局收敛和超线性收敛的.数值结果表明了算法的有效性.
Bused on a modified version of the Chen-Harker-Kanzow-Smale (CHKS) smoothing function, this paper investigates a non-monotone smoothing Newton algorithm with a scaled central path for solving linear programming over symmetric cones (SCLP). By using the theory of Euclidean Jordan algebras, we show that the proposed algorithm is globally and locally superlinearly convergent under suitable assumptions. Some preliminary numerical results is shown that our algorithm proposed is promising.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2014年第2期378-392,共15页
Acta Mathematica Scientia
关键词
线性规划
对称锥
欧氏若当代数
光滑算法
尺度中心路径
非单调线搜索
Linear programming
Symmetric cone
Euclidean Jordan algebra
Smoothingalgorithm
Scaled central path
Non-monotone line search.