期刊文献+

基于KIM算法和Adaboost级联的快速人脸检测

Fast Face Detection Based on KIM Algorithm and Adaboost Cascade
下载PDF
导出
摘要 KIM算法可以有效解决帧差法易产生空洞以及背景减法不能检测出背景灰度接近目标的问题,得到准确的运动区域,再利用基于级联分类器的Adaboost算法对运动区域进行人脸检测。实验结果表明,该方法可以更加快速、准确地实现人脸检测,具有较好的实时性。 The KIM algorithm can effectively solve the problems such as the empty hole produced by frame difference method and the bray level of the object closing to that of the background which cannot be detected by the background subtraction, and obtain the moving region accurately and detect faces on the motion region by Adaboost algorithm based on cascade structure. The experimental results show that it can realize the face detection more quickly and accurately with better real -time performance.
出处 《微处理机》 2014年第2期44-47,51,共5页 Microprocessors
关键词 帧差法 背景减法 ADABOOST算法 级联分类器 Frame difference Background subtraction Adaboost algorithm Cascade classiiier
  • 相关文献

参考文献7

  • 1YANG MH, KRIEGMAND, AHUJA. Detecting taces in images : A survey[ J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence,2002,24( 1 ) :34-58.
  • 2Yoav Freund, Robert E Schapire. A decision theoreticgen-eralization of online learning and an application toboosting [J ]. In Computational Learning Theory: Eurocolt "95, Springer - Verlag, 1995:23 - 37.
  • 3Kim M,ChoiJG, KimD,et al, A VOP generation tool :auto- matic segmentation of moving objects in mage sequences based on spatio - temporal information[ J ]. IEEE Transac- tions on Circuits and Systems tbr Video Technology, 1999,9(8 ) : 1216 - 1226.
  • 4Lu Ziyun,LiuWei. The compensated HS optical flow esti - marion based on matching Hm'ris corner points [ J ]. Pro - ceedin~ of" International Cont~rence on Electrical and Con - trol Engineering,2010:2279 - 2280.
  • 5赵冠华,冯晓毅,王虎,骆艳卜.结合对称差分法和背景减法的目标检测方法[J].2010,46(3):145-147.
  • 6Viola P, Jones M. Robust real - time object detection [ R]. Technical Report,2001/01. Compaq CRL. Febnlary 2001. $.
  • 7阮锦新,尹俊勋.基于人脸特征和AdaBoost算法的多姿态人脸检测[J].计算机应用,2010,30(4):967-970. 被引量:23

二级参考文献9

  • 1YANG J,LU W,WAIBEL A.Skin-color modeling and adaptation[C]// Third Asian Conference on Computer Vision.London:Springer-Verlag,1998:687-694.
  • 2KAKUMANU P,MAKROGIANNIS S,BOURBAKIS N.A survey of skin-color modeling and detection methods[J].Pattern Recognition,2007,40(3):1106-1122.
  • 3VIOLA P,JONES M.Rapid object detection using a boosted cascode of simple features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2001:511-518.
  • 4LIENHART R,MAYDT J.An extended set of haar-like features for rapid object detection[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2002:900-903.
  • 5JONES M,VIOLA P.Fast multi-view face detection[EB/OL].[2009-02-16].http://www.merl.com/reports/docs/TR2003-96.pdf.
  • 6YANG J,WAIBEL A.Real-time face tracker[C]// Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision.Washington,DC:IEEE Computer Society,1996:142-147.
  • 7HSU R L,ABDEL-MOTTALEB M,JAIN A K.Face detection in color images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):696-706.
  • 8FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of online learning and an application to boosting[C]// Proceedings of the Second European Conference on Computational Learning Theory.London:Springer-Verlag,1995:23-37.
  • 9YANG M H,KRIEGMAN D Jo AHUJA N.Detecting faces in images:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34-58.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部