期刊文献+

碳酸亚乙烯酯添加剂对LiFePO_4/石墨电池高温循环性能的影响(英文) 被引量:4

Effect of vinylene carbonate as electrolyte additive on cycling performance of LiFePO_4/graphite cell at elevated temperature
下载PDF
导出
摘要 研究成膜添加剂对材料结构稳定性及LiFePO4/石墨电池高温循环性能的影响。分别测试添加和未添加碳酸亚乙烯酯(VC)的18650电池的高温循环性能,并通过充放电测试、交流阻抗、扫描电镜、X射线能量色散光谱以及拉曼光谱等方法研究VC对电池正、负材料结构的影响。结果表明:VC添加剂在提高石墨结构稳定性的同时显著抑制LiFePO4材料中的溶铁行为;此外,VC添加剂阻止电解液在负极表面还原分解及负极表面SEI膜的增厚,也阻止电解液在LiFePO4电极表面的分解;含有VC添加剂的电解液可以有效改善LiFePO4/石墨电池在高温下的循环稳定性。 Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期723-728,共6页 中国有色金属学报(英文版)
基金 Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of China Project(20803095)supported by the National Natural Science Foundation of China
关键词 LIFEPO4 碳酸亚乙烯酯 电解液添加剂 循环性能 LiFeP04 vinylene carbonate electrolyte additive cycling performance
  • 相关文献

参考文献21

  • 1GU Yi-jie, ZENG Cui-song, WU Hui-kang, CUI Hong-zhi, HUANG Xiao-wen, LIU Xiu-bo, WANG Cui-ling, YANG Zhi-ning, LIU Hong. Enhanced cycling performance and high energy density of LiFePO4 based lithium ion batteries [J]. Materials Letters, 2007, 61: 4700-4702.
  • 2LIU Ping, WANG J, HICKS-GARNER U, SHERMAN E, SOUKIAZIAN S, VERBRUGGE M, TATARIA H, MUSSER J, FINAMORE P. Aging mechanisms of LiFePO4 batteries deduced by eleelIochemical and structural analyses [J]. Journal of the Electrochemical Society A, 2010, 157: 499-507.
  • 3TANG Hao, TAN Long, XU Jun. Synthesis and characterization of LiFePO4 coating with aluminum doped zinc oxide [J]. Transaction of Nonferrous Metals Society of China, 2013, 23:451-455.
  • 4AMINE K, LIU J, BELHAROUAK I. High-temperature storage and cycling of C-LiFePOdgraphite Li-ion cells [J]. Electrochemistry Communications, 2005, 7: 669-673.
  • 5SAFAR/ M, DELACOURT C. Aging of a commercial graphite/LiFePO4 cell [J]. Joumal of the electrochemical Society A, 2011, 158(10): 1123-1135.
  • 6CASTRO L, DEDRYVERE R, LEDEUIL 3 B, BREGER J, TESSIER C, GONBEAU D. Aging mechanisms of LiFePO4//graphite cells studied by XPS: Redox reaction and electrode/electrolyte interfaces [J]. Journal of the Electrochemical Society A, 2012, 159(4): 357-363.
  • 7KOLTYPIN M, AURBACH D, NAZAR L, ELLIS B. On the Stability of LiFePO4 Olivine cathodes under various conditions (electrolyte solutions, temperature) [J]. Electrochemical and Solid-State Letters A, 2007, 10(2): 40-44.
  • 8ZAGHIB K, RAVET N, GAUTHIER M, GENDRON F, MAUGER A, GOODENOUGH J B, JULIEN C M. Optimized electrochemical performance of LiFePO4 at 60℃ with purity controlled by SQUID magnetometry [J]. Journal of Power Sources, 2006, 163: 560-566.
  • 9KIM J H, WOO S C, PARK M S, KIM K J, YIM T, KIM J S, KIMY J. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage [J]. Journal of Power Sources, 2013, 229: 190-197.
  • 10CHANG C C, CHEN T K, HER L J, FEY G T K. Tris (pentafluorophenyl) borane as an electrolyte additive to improve the high temperature cycling performance of LiFePO4 cathode [J]. Journal of the Electrochemical Society A, 2009, 156(11): 828-832.

同被引文献26

  • 1程玲,周建成,吴东方,张正云.碳酸乙烯酯的合成及应用进展[J].精细石油化工进展,2008,9(12):44-52. 被引量:13
  • 2ZHANG W, LIU D W. Nitrogen-treated hierarchical macro-/ mesoporous Ti02 used as anode materials for lithium ion batteries with high performance at elevated temperatures [J]. Electrochimica Acta, 2015,156: 53-59.
  • 3YANG H, ZHUANG G V, ROSS P N Jr. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6 [J]. Journal of Power Sources, 2006,161: 573-579.
  • 4SHIEH D T, HSIEH P H, YANG M H. Effect of mixed LiBOB and LiPF 6 salts on electrochemical and thermal properties in LiMn204 batteries [J]. Journal of Power Sources, 2007, 174: 663-667.
  • 5MAROM R, HAIK 0, AURBACH D, HALALAY I C. Revisiting LiCl04 as an electrolyte for rechargeable lithium-ion batteries [J]. Journal of The Electrochemical Society, 2010, 157(8): A972-A983.
  • 6SMITH J W, LAM R K, SHEARDY A T, SHIH 0, RIZZUTO AM, BORODIN 0, HARRIS S J, PRENDERGAST D, SAYKALLY R J. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: A model lithium ion battery electrolyte [J]. Physical Chemistry Chemical Physic, 2014, 16: 23568-23575.
  • 7ZAINAL N, IDRIS R, SABIRIN M N. Studies of ENR-50 and LiN(S02CF3)2 electrolyte system [J]. Advanced Materials Research, 2012,545:303-307.
  • 8ABOUIMRANE A, DING J, DAVIDSON I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations [J]. Journal of Power Sources, 2009, 189: 693-696.
  • 9ZINIGRAD E, LEVI E, TELLER H, G. SALITRAG, AURBAUH D, DAN P. Investigation of lithium electrodeposits formed in practical rechargeable Li-LixMn02 batteries based on LiAsF6DIl ,3-dioxolane solutions [J]. Journal of the Electrochemical Society, 2004, 151(1): AIII-AII8.
  • 10MATSUMOTO K, INOUE K, NAKAHARA K, YUGE R, NOGUCHI T, UTSUGI K. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte [J]. Journal of Power Sources, 2013,231: 234-238.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部