期刊文献+

误差渐减在线序列ELM算法

Error Decrease Online Sequence Extreme Learning Machine
下载PDF
导出
摘要 提出一种既能改变网络结构又能不断添加新数据的学习算法,克服了在线序列ELM一旦开始学习便无法调整网络结构的困难。基于在线序列ELM算法的基本思想和理论及目前面临的难点,结合已存在ELM及改进算法,探寻适合在线序列ELM算法的网络结构调整策略。误差渐减在线序列ELM算法可以解决在线序列ELM目前面临的挑战,且所提算法理论实验方面均切实可行。 In this paper, a learning algorithm that can not only transform network structure but also add to new data is proposed, it not only learns online data hut also self-adapts network meanwhile. Solv- ing the challenge that Online Sequence Extreme Learning Machine(OS-ELM) could not change struc- ture once the learning process starts. So we find a strategy to adjust the framework of network for OS-ELM which base on theory and some improved algorithms on OS-ELM and Extreme Learning Ma- chine(ELM). Error Decrease Online Sequence Extreme Learning Machine can deal with the difficulty that OS-ELM is facing, and the algorithm proposed is reasonable in theory and numerical value experi- ment.
作者 王宇 张文芳
出处 《咸阳师范学院学报》 2014年第2期5-8,共4页 Journal of Xianyang Normal University
关键词 在线序列 误差渐减 网络结构 online sequence extreme learning machine network
  • 引文网络
  • 相关文献

参考文献1

二级参考文献13

  • 1Nguyen T M, Wu J Q M. A combination of positive and negative fuzzy rules for image classification problem [ C ]//Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, Washington DC, USA: IEEE Computer Society ,2008:741-746.
  • 2Huang Guangbin, Zhu Qinyu, Siew Chee-Kheong. Extreme learning machine : theory and applications [ J ]. Neurocomputing,2006,70( 1-3 ) :489-501.
  • 3Mandai D P, Murthy C A, Pal S K. Formulation of a multivalued recognition system [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1992,22 (4) :607-.620.
  • 4Pal S, Manda D P. Linguistic recognition system based on approximate reasoning [J]. Information Sciences, 1992,61 (1-2) : 135-161.
  • 5Ishibuchi H, Yamamoto T. Rule weight specification in fuzzy rule-based classification systems [ J ]. IEEE Transactions on Fuzzy Systems, 2005,13 (4) :428 -435.
  • 6Wu X, Zhang C, Zhang S. Efficient mining both positive and negative association rules [ J]. ACM Transactions on Information Systems,2004,22 (3) :381-405.
  • 7Teng W, Hsieh M, Chen M. On the mining of substitution rules for statistically dependent items [ C ]// Proceedings 2002 IEEE International Conference on Data Mining, Washington DC, USA : IEEE Computer Society Press,2002:442-449.
  • 8Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of customer transactions [ C ]// Proceedings of the Fourteenth International Conference on Data Engineering. Washington DC, USA: IEEE Computer Society Press, 1998:494-502.
  • 9Bartlett P L. For valid generalization, the size of weights is more important than the size of networks [ J ]. Advances in Neural Information Processing Systerm, 1996,9 (1) :134-140.
  • 10Ferrari S, Stenge! R F. Smooth function approximation using neural networks [ J ]. IEEE Transactions on Neural Networks, 2005,16 ( 1 ) :24-38.

共引文献16

;
使用帮助 返回顶部