期刊文献+

基于神经网络的杉木人工林碳通量影响因素的选择 被引量:2

Factors Selection for Affection of Carbon Flux Based on Artificial Neural Network
下载PDF
导出
摘要 对碳循环影响因素的研究是预测碳通量的重要环节,也是研究碳循环的重要基础。利用亚热带地区湖南省会同杉木人工林生态系统国家野外科学观测研究站2008年7—9月的碳通量和环境因子观测数据,采用遗传神经网络模型对碳通量预测因素进行优化选择,并与传统的相关分析方法进行对比分析。结果表明:模型CIV.8(输入参数包括空气温度Ta、光合有效辐射Par、大气CO2浓度ρc、空气相对湿度Rh、风速Ws、土壤温度Ts)是所有模型中模拟效果最好的。光合有效辐射与碳通量的相关性最强,相关系数是-0.704(P=0.000);降雨量与碳通量的相关性最弱,相关系数是0.002(P=0.854)。最多输入变量或最复杂的神经网络结构并不能得到最好的模型。 Selecting the affection factors for carbon cycle is a critical step for predicting carbon flux and the foundation to study the mechanism of carbon cycle.In this paper,C flux and meteorological data were collected o-ver a three months period between July and September in 2008 at Huitong National Research Station of Forest Eco-system.This paper proposes a method of driving factors selection based on artificial neural network (ANN).What is more,ANN is used to select the driving factors according to the criteria that model showed.Finally,the results based on ANN were compared to correlation analysis.The results showed that CIV.8 (input parameters included Ta,Par,ρc ,Rh,Ws,Ts)model was the best of all models.The strongest correlation was between Par and carbon flux (R=-0.704,P=0.000);but Precipitation (Prec)had weak positive correlation with carbon flux (R=0.002,P=0.854).The best results pertaining to ANN modeling do not derive from structure complexity or a grea-ter number of input parameters.
出处 《广东林业科技》 2014年第2期23-28,共6页 Forestry Science and Technology of Guangdong Province
基金 国家"973"计划项目专题"中国陆地生态系统碳-氮-水通量的相互关系及其环境影响机制"(2010CB833500)
关键词 遗传神经网络 相关分析 碳通量 预测因子 genetic neural network correlation analysis carbon flux factors selection
  • 相关文献

参考文献26

  • 1Liu S, Loveland T R, Kurtz R M. Contemporary carbon dynamics in terrestrial ecosystems in the southeastern plains of the Unit- ed States[ J]. Environmental Management,2004,33 ( 1 ) :442-456.
  • 2Hollinger D Y, Aber J, Dail B, et al. Spatial and temporal variability in forest-atmosphere CO2 exchange [ J ]. Global Change Biology, 2004,10 : 1689-1706.
  • 3铁玲,杨燕琼,勾啸,赵石杰.基于RS、GIS的林分龄组分析[J].广东林业科技,2005,21(2):26-29. 被引量:3
  • 4Munyati C. Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue flats, Zambia[ J ~. Geocarto International ,2004,19 ( 3 ) : 11-22.
  • 5Dalai D S, Rathi S S, Sangwan M L. Prediction of lifetime production in Hariana cattle using multiple regressions and principal component analysis [ J ]. Indian Journal of Dairy Science,2005,58 (2) : 141-143.
  • 6Palaniappan R, Ravi K V R. Improving visual evoked potential feature classification for person recognition using PCA and nor- malization [ J 1. Pattern Recognition Letters,2006,27 (7) : 726-733.
  • 7Paola J D, Schowengerdt R A. A review and analysis of back propagation neural networks for classification of remotely-sensed multi-spectral imagery [ J ]. International Journal of Remote Sensing, 1995,16 (16) : 3033-3058.
  • 8Kavzoglu T, Mather P M. The use of back propagating artificial neural networks in land cover classification [ J ]. International Journal of Remote Sensing,2003,24(23) :4907-4938.
  • 9Mas J F, Flores J J. The application of artificial neural networks to the analysis of remotely sensed data[ J]. International Jour- nal of Remote Sensing,2008,29 (3) :617-663.
  • 10Kavzoglu T. Increasing the accuracy of neural network classification using refined training data [ J ]. Environmental Modelling & Software, 2009,24 ( 7 ) : 850-858.

二级参考文献117

共引文献88

同被引文献41

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部