期刊文献+

多媒体传感器网络视频的帧分类联合重构

Frame Classification Based Joint Video Recovery Algorithm for Multimedia Sensor Networks
下载PDF
导出
摘要 为降低多媒体传感器网络中视频压缩感知的计算复杂度,提出一种基于帧分类的多媒体传感器网络视频联合重构算法。依据视频数据的联合稀疏模型将视频帧分为关键帧和非关键帧。对于压缩感知重构中欠定线性方程组,可利用关键帧和非关键帧之间的相关边信息进行重构初始化,同时运用有界约束二次规划对其进行求解。从仿真结果可知,相对于传统的视频压缩感知算法而言,在保证视频重构质量的前提下,所提方法在重构算法复杂度上不但能有效降低,同时,在视频重构上能提高其实时性。 For reducing the computation complexity of compressed sensing (CS) based video recovery algorithm in multimedia sensor networks, a frame classification based joint recovery algorithm is proposed. The frames of network video are classified into two types, which are key frames and non-key frames, and the side information between two types of frames can be used in initialization of recovery. The under-determined linear equations in CS recovery are solved by bound-constrained quadratic programming. Simulation results demonstrate that the proposed algorithm can significantly reduce the complexity while the accuracy of recovery is ensured, thus im- prove the real-time performance of video recovery in multimedia sensor networks.
出处 《测控技术》 CSCD 北大核心 2014年第4期30-34,共5页 Measurement & Control Technology
基金 河南省科技攻关计划项目(122102210407) 河南省科技厅基础与前沿技术研究项目(132300410204)
关键词 多媒体传感器网络 压缩感知 视频重构 帧分类 multimedia sensor networks compressed sensing video recovery frame classification
  • 相关文献

参考文献16

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2Misra S, Reisslein M, Xue G L. A survey of multimedia streaming in wireless sensor networks [ J ]. IEEE Communi- cations Surveys and Tutorials ,2008,10 (4) :18 -39.
  • 3Donoho D L. Compressed sensing[ J]. IEEE Transactions on Information Theory ,2006,52(4) : 1289 - 1306.
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty princi- ples :Exact signal reconstruction from highly incomplete fre- quency information [ J ]. IEEE Transactions on Irdbrmation Theory ,2006,52 ( 2 ) :489 - 509.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 6Wakin M B,Laska J N,Duarte M F,et al. Compressive ima- ging for video representation and coding [ C ]//Proceedings of Picture Coding Symposium. 2006.
  • 7Marcia R F, Willet R M. Compressive coded aperture video reconstruction [ C ]//Proceedings of European Signal Pro- cessing Conference. 2008.
  • 8Park J Y, Wakin M B. A multiscale framework for compres- sive sensing of video [ C ]//Proceedings of Picture Coding Symposium. 2009.
  • 9苏晓园,练秋生.基于迭代收缩法和三维复数小波的视频压缩传感重构[J].光电工程,2010,37(2):108-112. 被引量:4
  • 10Daubechies I, Defrise M,DeMol C. An iterative thresholding algorithm for linear inverse problems with a sparsity con- straint[ J]. Communications on Pure and Applied Mathe- matics ,2004,57 ( 11 ) : 1413 - 1457.

二级参考文献100

  • 1柳立峰,邹仕洪,张雷,程时端.基于概率覆盖模型的无线传感器网络密度控制算法[J].北京邮电大学学报,2005,28(4):14-17. 被引量:33
  • 2任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献899

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部