期刊文献+

基于CAD的半解析参数化几何建模方法 被引量:4

CAD-based Semi-analytical Parametric Geometry Modeling Method
下载PDF
导出
摘要 针对目前飞行器多学科设计优化(MDO)在计算机仿真应用中参数化几何建模方法在设计变量可控情况下描述能力不足、适应性差的问题,结合当前几种常见方法的建模思想,引入图形基、曲线乘法修正和加法修正的概念,提出一种适用范围更广的参数化描述方法,并将其应用到CAD几何建模中,衍生出一套基于CAD的半解析混合参数化几何建模方法,该方法结合CAD与解析方法的优势,描述能力强、实现简单。翼型和飞行器参数化建模及弹头形状优化的算例表明,基于CAD的半解析混合参数化方法能兼容传统的参数化方法,将图形基构成的设计空间与传统参数空间合并,可有效提高参数化方法的描述能力和适应能力,可用于丰富MDO几何建模的参数选择,探索新型设计。 For the current aircraft muhidisciplinary design optimization (MDO) in computer simulation applications, the problem of poor description ability and adaptability with limited variables, in geometry modeling, stands out. According to the central idea of several common modeling methods, the concepts of graphic basis and curve correction are introduced, which present a greater scope to promote parametric description ability. Its application to CAD geometry modeling derives a set of CAD-based semi-ana- lytical hybrid parametric geometric modeling method, which combines both the advantages, with a strong description ability and a simple realization. The cases of airfoil, aircraft parametric modeling and warhead shape optimization indicate that the CAD-based semi-analytical hybrid method for parameterization is compatible with the traditional method, combining the extended design space and the traditional one, which effectively improve the description ability and the adaptability of the parametric method. It has a certain significance to enrich the parameter selection and new design exploration in geometric modeling of MDO.
出处 《计算机与现代化》 2014年第4期1-7,共7页 Computer and Modernization
基金 总装备部武器装备预研基金资助项目(9140A20100111HK0318) 西北工业大学基础研究基金资助项目(JC20120215)
关键词 多学科设计优化 几何建模 计算机辅助设计 图形基 半解析参数化方法 曲线修正 MDO geometry modeling CAD graphics basis semi-analytical parameterization curve correction
  • 相关文献

参考文献17

  • 1Samareh J A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization [ J ]. AIAA Journal, 2001,39 (5) :877-884.
  • 2Hicks R M, Henne P. Wing design by numerical optimiza- tion[J]. Journal of Aircraft, 1978,15(7) :407-412.
  • 3Wataru Yamazaki, Sylvain Mouton. Geometry parameter- ization and computational mesh deformation by physics- based direct manipulation approaches [ J ]. AIAA Journal, 2010,48 (8) : 1817-1832.
  • 4David S l.azzara. CAD-Based Mtdtifidelity Analysis and Mul- tidisciplinary Optimization in Aircraft Conceptual Design[ D]. Massachusetts Institute of Technology, 2008.
  • 5Vandenbrande J H, Grandine T A, Hogan T. The search for the perfect body: Shape control for multidisciplinary de- sign optimization[ C ]//The 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006:928-943.
  • 6Miehiel H Straathof, Michel J L van Tooren. Extension to the class-shape-transformation method based on B-splines [J]. AIAA Journal, 2011,49(4) :780-790.
  • 7Kulfan B M, Bussolettj J E. "Fundamental" parametric geometry representations for aircraft eonponent shapes [ C]// The llth AIAA/ISSMO Muhidisciplinary Analysis and Optimization Conference. 2006:6948.
  • 8Kulfan B M. A universal parametric geometry representa- tion method-" CST" [ C ]//The 45th AIAA Aerospace Sci- ences Meeting and Exhibit. 2007:62-96.
  • 9关晓辉,李占科,宋笔锋.CST气动外形参数化方法研究[J].航空学报,2012,33(4):625-633. 被引量:37
  • 10徐亚峰,刘学军,吕宏强.基于CST参数化方法的翼型快速设计[J].航空计算技术,2011,41(5):24-29. 被引量:8

二级参考文献87

共引文献134

同被引文献17

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部