期刊文献+

基于卷积神经网络的植物叶片分类 被引量:65

Plant Leaf Classification Based on CNN
下载PDF
导出
摘要 回顾近年来国内外植物叶片分类的研究进展,指出传统方法存在的缺陷。简述卷积神经网络在图像分类的优势,为了简单高效地对植物叶片进行识别,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的植物叶片识别方法。在Swedish叶片数据集上的实验结果表明,本算法识别正确率高达99.56%,显著优于传统的叶片识别算法。 Plant plays an important role in human life, so it is necessary to build an automatic system for recognizing plant. Plant leaf classification has become a research focus for twenty years. However, conventional methods for recognizing plant leaf have va- rious drawbacks. CNN gained great success in image recognition, in order to utilize CNN to recognize plant leaf, a hierarchical model based on convolutional neural network is proposed. We applied our method to Swedish leaf dataset classification, the exper- imental results showed that the proposed method is quite effective and feasible.
出处 《计算机与现代化》 2014年第4期12-15,19,共5页 Computer and Modernization
关键词 植物叶片分类 卷积神经网络 深度学习 神经网络 特征图 plant leaf classification convolutional neural network deep learning neural network feature map
  • 相关文献

参考文献13

  • 1Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identi- fication[ J]. Transaction of the ASABE, 1993,36 ( 1 ) : 163-171.
  • 2Im C, Nishida H, Kunii T L. Recognizing plant species by leaf shapes-a case study of the Acer family [ C ]//Proceed- ings of 14th International Conference on Pattern Recogni- tion. Brisbane, IEEE. 1998,2 : 1171-1173.
  • 3Oide M, Ninomiya S. Discrimination of soybean leaflet shape by neural networks with image input [ J]. Computers and Electronics in Agriculture, 2000,29(1-2) :59-72.
  • 4Soderkvist O J O. Computer Vision Classification of Leaves from Swedish Trees [ D ]. Linkoping: Linkoping Universi- ty, 2001.
  • 5Ling H, Jacobs D W. Shape classification using the inner- distance[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (2) :286-299.
  • 6Felzenszwalb P F, Schwartz J D. Hierarchical matching of deformable shapes [ C ]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR'07). 2007: 1-8.
  • 7Zhang Shah-wen, Lei Ying-ke, Dong Tian-bao, et al. La- bel propagation based supervised locality projection analy- sis for plant leaf classification [ J ]. Pattern Recognition, 2013,46 (7) : 1891-1897.
  • 8Hubel D H, Wiesel T N. Receptive fields of single neu- rones in the cat' s striate cortex [ J ]. The Journal of physi- ology, 1959,148 (3) :574-591.
  • 9Kunihiko Fukushima. Neocognitron: A self-organizing neu- ral network model for a mechanism of pattern recognition unaffected by shift in position[ J]. Biological Cybernetics, 1980,36(4) :193-202.
  • 10LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition [ J ]. Neural Computation, 1989,1 (4) :541-551.

同被引文献609

引证文献65

二级引证文献739

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部