期刊文献+

一种基于随机森林的特征匹配方法

Feature Matching Method Based on Random Forests Classifier
下载PDF
导出
摘要 在特征匹配问题中,匹配速度与精度常常难以同时保证。为了解决该问题,本文提出一种基于随机森林的特征匹配算法。结合SUSurE算法,在尺度空间下提取局部不变特征,构建训练样本集合,对随机森林进行离线训练建立分类模型。在实时匹配中,选取候选特征点对其进行实时分类,完成特征匹配,并与SIFT算法在不同尺度、旋转、视角方面等进行实验对比。结果表明,本文算法在具有良好的实时性情况下,仍有较高的光照适应性和匹配精度。 It is difficult to be speedy as well as accurate in feature matching. To overcome the drawback, this paper proposes a feature matching method based on random forest. This method extracts local invariant features in scale space by SUSurE algo- rithm, then the features and its adjacent pixels are constructed as training samples. In off-line, the random forests are trained and a classification model is acquired to deal with the scale, rotation, illumination and perspective changes. In the online stage, the candidate feature points input RF classifier for real-time classification and feature matching. Comparative tests are made between our approach and SIFT. Experimental results show that the method based on RF is generally more robust and faster in the premise of real-time, and is good at accuracy, as well as adjusting to the illumination changes.
出处 《计算机与现代化》 2014年第4期81-85,共5页 Computer and Modernization
关键词 特征匹配 随机森林 SUSurE 不变特征 SIFT feature matching random forests SUSurE local invariant features SIFT
  • 相关文献

参考文献13

  • 1Rosten E, Drummond T. Machine learning for high-speed comer detection [ C ]// Proceedings of the 9th European Conference on Computer Vision. 2006:430-443.
  • 2David G Lowe. Distinctive image features from scale-invari- ant keypoints [ J ]. International Journal of Computer Vi- sion, 2004,60(2) :91-110.
  • 3Herbert Bay, Andreas Ess, Tinne Tuytelaars, et al. Spee- ded-up robust features (SURF)[ J ]. Computer Vision and Image Understanding, 2008,110 ( 3 ) : 346-359.
  • 4Ozuysal M, Lepetit V, Fleuret F, et al. Feature harvesting for tracking by detection [ C ]// Computer Vision ECCV 2006, 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006:592-605.
  • 5Leo Breiman. Random forests [ J ]. Machine Learning, 2001,45( 1 ) :5-32.
  • 6Mosalam Ebrahimi, Walterio W Mayol-Cuevas. SUSurE: Speeded up surround extrema feature detector and descrip- tor for realtime applications [ C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2009:9-14.
  • 7Agrawal M, Konolige K. CenSurE: Center surround extre- mas for real-time feature detection and matching [ C ] // Proceedings of the 10th European Conference on Computer Vision. Berlin : Springer, 2008 : 102-115.
  • 8胡佳,汤光明,孙怡峰,刘佳.基于CenSurE特征的虚实配准方法研究[J].计算机应用研究,2013,30(6):1910-1913. 被引量:1
  • 9Lepetit V, Fua P. Keypoint recognition using randomized trees [ J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2006,28 (9) : 1465-1479.
  • 10马景义,谢邦昌.用于分类的随机森林和Bagging分类树比较[J].统计与信息论坛,2010,25(10):18-22. 被引量:17

二级参考文献38

  • 1陈金波,吴家麒,袁政鹏.一种基于自然特征点的增强现实注册方法[J].上海大学学报(自然科学版),2005,11(6):574-578. 被引量:4
  • 2李利军,管涛,段利亚,王乘.基于仿射变换特征匹配的虚实注册方法[J].华中科技大学学报(自然科学版),2007,35(7):74-77. 被引量:3
  • 3Zhao W, Chellappa R, Rosenfeld A, et al. Face recognition: A literature survey [J]. ACM Computing Surveys, 2003, 35(4): 399- 458.
  • 4Pantic M, Rothkrantz M. Automatic analysis of facial expression: The state of the art [J]. IEEE Trans on PAMI, 2000, 22(12): 1424-1445.
  • 5WANG Jiangang, Sung E. Facial feature extraction in an infrared image by proxy with a visible face image [J]. IEEE Trans on Instrumentation and Measurement, 2007, 56(5): 2057 - 2066.
  • 6Hess M, Martinez G. Facial feature extraction based on the smallest univalue segment assimilating nucleus (SUSAN) algorithm [C]//Proceedings of Picture Coding Symposium. San Franscisco, California, 2004, 261 - 266.
  • 7Smith S M, Brady J M. SUSAN-A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1): 45- 78.
  • 8Breiman L. Random forests [J]. Machine Learning, 2001, 45: 5-32.
  • 9Ma Yong. Research on face detection and organ localization under complex background [D]. Beijing: Tsinghua University, July 2004.
  • 10Zhou Z H, Geng X. Projection functions for eye detection [J]. Pattern Recognition, 2004, 37(5) : 1049 - 1056.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部