期刊文献+

基因工程菌发酵秸秆水解液产生物柴油 被引量:1

Efficiency biodiesel production by genetic engineered strain using straw hydrolysate
下载PDF
导出
摘要 目前生物柴油的价格是石化柴油的1.5倍,寻求新的廉价易得的原料降低生物柴油的成本是必然趋势。作物秸秆是一种低廉普遍的废弃物,秸秆中含有纤维素,半纤维素等成分,水解成单糖后可以作为合成生物柴油所需的糖类来源。利用前期研究构建的基因工程菌Escherichia coli pET28a(+)-PAW发酵秸秆(玉米秸秆和小麦秸秆)水解液得到乙醇,并在胞内将乙醇与外源添加的脂肪酸进行同步转化合成生物柴油的主要成分脂肪酸乙酯。HPLC分析表明玉米水解液中葡萄糖含量(10.40 g·L-1)较高,小麦水解液中木糖含量(40.56 g·L-1)较高。E.coli pET28a(+)-PAW能够有效地以小麦和玉米两种秸秆水解液作为糖类替代物发酵生产生物柴油,小麦水解液培养基中的生物柴油含量(0.30 g·L-1)高于玉米水解液培养基中的含量(0.25g·L-1),同时也高于现有报道。结果表明,以秸秆水解液作为原料,利用基因工程菌合成生物柴油是可行的,有助于降低生物柴油的原料成本。 The price of biodiesel is approximately 1.5 times higher than that of traditional diesel .It is urgent to explore cheaply available substrates to reduce the cost of biodiesel production .As one of the cheap and widespread wastes, lignocellulose contained cellulose and hemicellulose which could be hydrolyzed and used in the fermentation of biodiesel.The genetic engineered strain Escherichia coli pET28a (+)-PAW fermented straw hydrolysates into alcohol, and further into biodiesel with fatty acids by one-step transformation in-vivo.The HPLC analysis showed that the corn straw hydrolysate had a higher glucose concentration (10.40 g·L-1 ) and the wheat straw hydrolysate had a higher xylose concentration (40.56 g·L-1 ).When straw hydrolysates were utilized as sugar substitutes for biodiesel production by E.coli pET28a(+)-PAW, the maximum biodiesel yield of 0.30 g· L-1 ( wheat hydrolysate ) was obtained which is higher than the yield of biodiesel 0.25 g·L-1 (corn hydrolysate) and the present reports.The straw hydrolysates could be utilized by genetic engineering strain as the substrates for biodiesel production , to reduce the material price of biodiesel.
出处 《浙江农业学报》 CSCD 北大核心 2014年第2期403-409,共7页 Acta Agriculturae Zhejiangensis
基金 浙江省国际科技合作项目(2008C14038) 浙江省博士后科研项目(Bsh1202079) 中国博士后基金(2012M521199)
关键词 脂肪酸乙酯 生物柴油 秸秆水解液 Escherichia coli pET28a(+)-PAW fatty acid ethyl esters biodiesel Escherichia coli pET28a(+)-PAW straw hydrolysates
  • 相关文献

参考文献1

二级参考文献13

  • 1赵宗保,华艳艳,刘波.中国如何突破生物柴油产业的原料瓶颈[J].中国生物工程杂志,2005,25(11):1-6. 被引量:137
  • 2于典科,张小华,刘向勇,鲍晓明,高东.酿酒酵母转座标签插入突变体263-H9中高盐胁迫基因的确定[J].遗传,2006,28(10):1294-1298. 被引量:4
  • 3墨玉欣,刘宏娟,张建安,陈晓辉.微生物发酵制备油脂的研究[J].可再生能源,2006,24(6):24-28. 被引量:11
  • 4Corma A, Iborra S, Velty A, et al. Chemical routes for the transformation of biomass into chemicals. Chem Rev, 2007, 107(6): 2411-2502.
  • 5Service RF. Cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science, 2007, 315(5818): 1488-1491.
  • 6Ross-Macdonald P, Coelho PS, Roemer T, et al.Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 1999, 402(6760): 413-418.
  • 7de Jesus Ferreira MC, Bao XM, Laize V, et al. Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature. Curr Genet, 2001, 40(1): 27-39.
  • 8Adams A, Gottschling DE, Kaiser CA, et al. Methods in Yeast Genetics. Beijing: Science Press, 2000.
  • 9Izard J, Limberger RJ. Rapid screening methods for quantity of bacterial cell lipids from whole cells. J Microbiol Methods, 2003, 55(2): 411-418.
  • 10Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2007, 2(1): 31-34.

共引文献4

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部