期刊文献+

A frequency domain design of PID controller for an AVR system 被引量:1

A frequency domain design of PID controller for an AVR system
原文传递
导出
摘要 We propose a new proportional-integral-derivative(PID) controller design method for an automatic voltage regulation(AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods. We propose a new proportional-integral-derivative (PID) controller design method for an automatic voltage regula- tion (AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第4期293-299,共7页 浙江大学学报C辑(计算机与电子(英文版)
关键词 Automatic voltage regulation(AVR) PID controller Frequency response matching Automatic voltage regulation (AVR), PID controller, Frequency response matching
  • 相关文献

参考文献20

  • 1Aguila-Camacho, N. Duarte-Mermoud, M.A. 2013. Fractional adaptive control for an automatic voltage regulator. ISA Trans. 52(6):807-815. [doi:10.1016/j. isatra.2013.06.005].
  • 2Ang, K.H. Chong, G. Li, Y. 2005. PID control system analysis, design and technology. IEEE Trans. Contr. Syst. Technol. 13(4):559-576. [doi: 10.1109/TCST.2005.847 331].
  • 3Astrom, K.J. Hagglund, T. 1995. PID Controllers Theory Design and Tuning (2nd Ed.). Instrument Society of America, Research Triangle Park, North Caorlina.
  • 4Chen, D. Seborg, D.E. 2002. PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41(19):4807-4822. [doi: 10.1021/ie010756m].
  • 5Gaing, Z.L. 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Conv. 19(2):384-391. [doi:10.1109/ TEC.2003.821821 ].
  • 6Ho, W.K. Hang, C.C. Cao, L.S. 1995. Tuning of PID controllers based on gain and phase margin specification. Automatica, 31(3):497-502. [doi:10.1016/0005-1098(94) 00130-B].
  • 7Kim, D.H. 2011. Hybrid GA BF based intelligent PID controller tuning for AVR system. Appl. Soft Comput. 11 (1): 11-22. [doi: 10.1016/j.asoc.2009.01.004].
  • 8Kundur, P. 1994. Power System Stability and Control. McGraw Hill, New York.
  • 9Mukherjee, V. Ghoshal, S.P. 2007. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electr. Power Syst. Res. 77(12):1689-1698. [doi:10. 1016/j.epsr.2006.12.004].
  • 10O'Dwyer, A. 2006. Handbook of PI and PID Controller Tuning Rules (2nd Ed.). Imperial College Press, London. [doi: 10.1142/p424].

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部