期刊文献+

An efficient numerical shape analysis for light weight membrane structures 被引量:12

An efficient numerical shape analysis for light weight membrane structures
原文传递
导出
摘要 The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第4期255-271,共17页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the National Natural Science Foundation of China (Nos. 51025858 and 51178415)
关键词 Tension membranes Finite particle method (FPM) Shape analysis Explicit time integration Initial equilibriumshape 初始平衡形状 膜结构 重量轻 数值分析 几何非线性 应用程序 牛顿第二定律 自由粒子
  • 相关文献

参考文献5

二级参考文献32

  • 1蔡有余,李淑华,罗会元,王秀琴,吴旻.人体肝癌细胞株(7402)的细胞同步化和中期染色体分离方法[J].解剖学报,1984(1):77-81. 被引量:5
  • 2王宪航,龙勉,王晓军,王红兵,罗向东,吴泽志,宋关斌,吴云鹏.肝癌细胞与胶原蛋白Ⅰ裱衬表面粘附特性[J].生物物理学报,1996,12(4):686-690. 被引量:7
  • 3Haber R B, Abel J F. Initial equilibrium solution methods for cable reinforced membranes : Part I--Formulations [ J ]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(3): 263-284.
  • 4Hildebrandt S, Tromba A. Mathematics and optimal form [ M]. New York: Scientific American Library, 1985.
  • 5Haug E, Powell G H. Finite element analysis of nonlinear membrane structures [ C ]//Proceedings of the 1971 IASS Pacific Symposium. Tokyo, 1972:165-175.
  • 6Barnes M R. Form-finding and analysis of prestressed nets and membranes [ J]. Computers & Structures, 1988, 30 (3) : 685-695.
  • 7Linkwitz K. Form finding by the "direct approach" and pertinent strategies for the conceptual design of prestressed and hanging structures [ J ]. International Journal of Space Structures, 1999, 14(2): 73-88.
  • 8Bletzinger K U, Ramm E. A general finite element approach to the form finding of tensile structures by the updated reference strategy [ J ]. International Journal of Space Structures, 1999, 14(2): 131-145.
  • 9Maurin B, Motro R. The surface stress density method as a form finding tool for tensile membrane [ J ]. Engineering Structures, 1999, 20(8): 712-719.
  • 10Boner J, Mahaney J. Form-finding of membrane structures by the updated reference method with minimum mesh distortion [ J ]. International Journal of Solids and Structures, 2001, 38(32) : 5469-5480.

共引文献53

同被引文献49

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部