摘要
We study rogue waves described by nonlinear Schr6dinger equations. Such wave solutions are so different from conventional soliton solutions that classic methods such as the Crank-Nicolson scheme cannot work for these cases. Fortunately, we find that the local discontinuous Galerkin method equipped with Dirichlet boundary conditions can simulate rogue waves very well. Several numerical examples are presented to show such interesting wave solutions.
We study rogue waves described by nonlinear Schr6dinger equations. Such wave solutions are so different from conventional soliton solutions that classic methods such as the Crank-Nicolson scheme cannot work for these cases. Fortunately, we find that the local discontinuous Galerkin method equipped with Dirichlet boundary conditions can simulate rogue waves very well. Several numerical examples are presented to show such interesting wave solutions.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 11271195,11271196 and 41231173
the Jiangsu Collaborative Innovation Center for Climate Change
the Project of Graduate Education Innovation of Jiangsu Province under Grant No CXZZ12-0385.