期刊文献+

Optoelectronic Properties, Elastic Moduli and Thermoelectricity of SrAlGa: An Ab Initio Study 被引量:1

Optoelectronic Properties, Elastic Moduli and Thermoelectricity of SrAlGa: An Ab Initio Study
下载PDF
导出
摘要 Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab fnitio total energy calculations within the modified Becke-Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125-0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAIGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra. Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab fnitio total energy calculations within the modified Becke-Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125-0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAIGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第4期134-138,共5页 中国物理快报(英文版)
  • 相关文献

参考文献39

  • 1Casper F, Graf T, Chadov S, Balke B and Felser C 2012 Semicond. Sei. Teehnol. 27 063001.
  • 2Asahi R, Morikawa T, Itazama H and Matsubara M 2008 J. Phys.: Condens. Matter 20 64227.
  • 3Poon S J 2001 Recent 7Yends in Thermoelectric Materials Research 17, Semiconductors and Semimetals vol 70 ed TrittT M (New York: Academic) p 37.
  • 4Ogiit S and Rabe K M 1995 Phys. Rev. B 51 10443.
  • 5Jung D, Koo H J and Whangbo M H 2000 2000 J. Mol. Struct. Theochem. 527 113.
  • 6Kandpal H C, Felser C and Seshadri R 2006 J. Phys. D: Appl. Phys. 39 776.
  • 7Gruhn T 2010 Phys. Rev. B 82 125210.
  • 8Chadov S, Qi X, Kubler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541.
  • 9Lin H, Wray A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546.
  • 10Felser C, Fecher C H and Balke B 2007 Angew. Chem. Int. Ed. 46 668.

同被引文献59

  • 1Kresse G,Furthmuller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B Condensed Matter and Materials Physics . 1996
  • 2Asker C,Vitos L,Abrikosov I A. Physical Review B Condensed Matter and Materials Physics . 2009
  • 3Sha X W,Cohen R E. Physical Review B Condensed Matter and Materials Physics . 2010
  • 4Binggeli N,Chelikowsky J R. Physics Review Letters . 1993
  • 5Soderlind P,Moriarty J A. Physical Review B Condensed Matter and Materials Physics . 1998
  • 6Kresse G,and Furthmuller J. Physical Review B Condensed Matter and Materials Physics . 1996
  • 7Kresse G,and Joubert D. Physical Review B Condensed Matter and Materials Physics . 1999
  • 8Dewaele A,Loubeyre P,Mezouar M. Physical Review B Condensed Matter and Materials Physics . 2004
  • 9Wu X,Vanderbilt D,Hamann D R. Physical Review B Condensed Matter and Materials Physics . 2005
  • 10Hamann D R,Wu X F,Rabe K M,Vanderbilt D. Physical Review B Condensed Matter and Materials Physics . 2005

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部