期刊文献+

The Edge Magnetization and Strip Phase of Graphene Quantum Dots with Long-Range Coulomb Interaction

The Edge Magnetization and Strip Phase of Graphene Quantum Dots with Long-Range Coulomb Interaction
下载PDF
导出
摘要 We investigate the magnetism and optical absorption properties of charge neutral hexagonal graphene quantum dots (GODs) terminated with zigzag edges by using a tight-binding Hubbard type model for the 7r electrons. Within the Hartree Fock approximation and taking into account the long-range Coulomb interaction, our cal- culation yields a ferromagnetic ground state with magnetic moments localized on the edges for GODs, and also gives an antiferromagnetism state with the energy very c/ose to the ferromagnetism ground state. We find that both the ferromagnetic and the antiferrornagnetic states have stripe patterned charge density distributions as a result of the long-range Coulomb interaction. The optical conductivity for GQDs has an energy gap in the low frequency regime in contrast to the bulk neutral graphene sheet where a universal constant is approached. We investigate the magnetism and optical absorption properties of charge neutral hexagonal graphene quantum dots (GODs) terminated with zigzag edges by using a tight-binding Hubbard type model for the 7r electrons. Within the Hartree Fock approximation and taking into account the long-range Coulomb interaction, our cal- culation yields a ferromagnetic ground state with magnetic moments localized on the edges for GODs, and also gives an antiferromagnetism state with the energy very c/ose to the ferromagnetism ground state. We find that both the ferromagnetic and the antiferrornagnetic states have stripe patterned charge density distributions as a result of the long-range Coulomb interaction. The optical conductivity for GQDs has an energy gap in the low frequency regime in contrast to the bulk neutral graphene sheet where a universal constant is approached.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第4期150-154,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 91121021 and 11074166, and Shanghai Natural Science Foundation under Grant No 12ZR1413300.
  • 相关文献

参考文献39

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666.
  • 2Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnel- son M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197.
  • 3Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201.
  • 4Geim A K and Novoselov K S 2007 Nat. Mater. 6 183.
  • 5Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803.
  • 6Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109.
  • 7Ferrari A C, Meyer J C, Seardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanee S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401.
  • 8Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839.
  • 9Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297.
  • 10Xu N, Wang B L, Sun H Q and Ding J W 2010 Chin. Phys. Lett. 27 107303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部