期刊文献+

Impact of CHFa Plasma Treatment on A1GaN/GaN HEMTs Identified by Low-Temperature Measurement

Impact of CHFa Plasma Treatment on A1GaN/GaN HEMTs Identified by Low-Temperature Measurement
下载PDF
导出
摘要 We investigate the impact of CHFa plasma treatment on the performance of AIGaN/GaN HEMT (F-HEMT) by a temperature-dependent measurement in the thermal range from 6 K to 295 K. Tlle temperature dependence of the transconductance characteristics in F-HEMT declares that the Coulomb scattering and the optical phonon scattering are effectively enhanced by the fluorine ions in the A1GaN layer. The fluorine ions not only provide immobile negative charges to deplete 2DEG, but also enhance the Schottky barrier height of the metal gate. Thermal activation of the carrier traps induced by CHF3 plasma for F-HEMT contributes to the negative shift of the threshold voltage by -3.4mV/℃ with the increasing temperature. The reverse gate-leakage current of F-HEMT is decreased by more than two-order magnitude in comparison with that of conventional A1GaN/GaN HEMT (C-HEMT) without fluorine ions. We investigate the impact of CHFa plasma treatment on the performance of AIGaN/GaN HEMT (F-HEMT) by a temperature-dependent measurement in the thermal range from 6 K to 295 K. Tlle temperature dependence of the transconductance characteristics in F-HEMT declares that the Coulomb scattering and the optical phonon scattering are effectively enhanced by the fluorine ions in the A1GaN layer. The fluorine ions not only provide immobile negative charges to deplete 2DEG, but also enhance the Schottky barrier height of the metal gate. Thermal activation of the carrier traps induced by CHF3 plasma for F-HEMT contributes to the negative shift of the threshold voltage by -3.4mV/℃ with the increasing temperature. The reverse gate-leakage current of F-HEMT is decreased by more than two-order magnitude in comparison with that of conventional A1GaN/GaN HEMT (C-HEMT) without fluorine ions.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第4期189-192,共4页 中国物理快报(英文版)
基金 Supported by the National Basic Research Program of China under Grant No 2010CB934104, and the National Natural Science Foundation of China under Grant No 61376069.
  • 相关文献

参考文献16

  • 1Okamoto Y, Ando Y, Hataya 14, Nakayama T, MiyamotoH, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N and Kuzuhara M 2004 IEEE Trans. Microwave Theory Tech. 52 2536.
  • 2Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Proc. Device Res. Conf. (Pennsylvania USA 26-28 June 2006) p 151.
  • 3Shinohara K, Corrion A, Regan D, Milosavljevic I, Brown D, Burnham S, Willadsen P J, Butler C, Schmitz A, Wheeler D, Fung A and Micovic M 2010 IEEE IEDM Tech. Dig. (San Francisco USA 6-8 December 2010) p 672.
  • 4Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514.
  • 5Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Elec- tron. Dev. 57 368.
  • 6Mizutani T, Ito M, Kishimoto S and Nakamura F 2007 IEEE Electron. Dev. Lett. 28 549.
  • 7Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H and Akasaki I 2006 Jpn. J. Appl. Phys. 45 L1048.
  • 8Oka T and Nozawa T 2008 IEEE Electron. Dev. Lctt. 29 668.
  • 9Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron. Dev. Lett. 26 435.
  • 10Vanko G, Lalinsk T and Hascik S 2009 Vacuum 84 235.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部