期刊文献+

高阶IRT模型——项目反应理论的新进展 被引量:1

Higher-Order IRT Model: New Development of Item Response Theory
下载PDF
导出
摘要 早期的单维IRT模型忽视了测验多维性的可能,而多维IRT模型对各维度的划分不够明确,不能很好地反映各维度能力的内涵。高阶IRT模型承认测验的多维性,以分测验划分维度,同时又将多个维度的能力统一到一个高阶的能力中,能够在了解被试各维度的能力同时,为被试提供整体的能力估计,它能更好地反映实际,并且适应大规模测验的需求。 Item Response Theory (IRT) is a well known theory which can reflect the relationship between latent trait and items. However, both uni-dimensional IRT model and multi-dimensional IRT model are short at reflecting ability structure precisely and appropriately. The Higher-Order IRT ( H-O IRT) model is a muhi-unidimensional model that uses in-test collateral information and represents it in the co-relational structure of the domains through a higher-order latent trait formulation. H - O IRT model can provide both domain and the whole information, which is better fulfilling the needs of large-scale tests.
作者 潘浩
出处 《考试研究》 2014年第2期59-63,共5页 Examinations Research
关键词 高阶IRT 多维IRT 单维IRT H-O IRT, Multi-dimensional IRT, Uni-dimensional IRT
  • 相关文献

参考文献19

  • 1黄子晏.阶层式试题反应理论之多点计分模探讨[EB/OL].http://ndltd, ncl. edu. tw/cgi-bin/gs32/gswev, cgi? o = dnclcd&s = id = % 22099NTCTC629089% 22. &searchmode = basic.
  • 2苏启明.高阶层试题反应理论模式延伸与应用[EB/OL].http://ndhd, ncl. edu. tw/cgi-bin/gs32/gsweb, cgi? o = dnclcdr&s = id = %22099CCU00071010% 22. &searchmode = basic.
  • 3孙长荪.以NAEP数学评量中数学能力架构进行国小六年级几何测验的编制与分析[D].台中教育大学,2010.
  • 4张素珍,李佩瑾,郭伯臣等.应用HIRT于实证资料分析-以国小六级数学小数的除法单元为例[J].测验统计年刊(台湾),2010,第十八辑:51-66.
  • 5张胜凯.使用HIRT模式建立国小六年级学童数学推理能力测验[D].台中教育大学,2010.
  • 6Birnbaum, A. Some Latent Trait Models and Their Use in Inferring An Examinee's Ability [ A ]. In : F. M. Lord & M. R. Novick. Statistical Theories of Mental Test Scores [ M ]. Reading, MA: Addison-Wesley, 1968.
  • 7Embretson, S. E. & Reise, S. P. Item Response Theory for Psychologists [ M ]. Mahwah, NJ : Erlbaum,2000.
  • 8Chih-Wei Yang, Bor-Chen Kuo & Chen-Huei Liao. A HO-IRT Based Diagnostic Assessment System With Constructed Response Items [J]. The Turkish Online Journal of Educational Technology, 2011, 10 (4) : 46 -51.
  • 9de la Torre, J. & Song, H. Simultaneous Estimation of Overall and Domain Abilities: A Higher-Order IRT Model Approach [ J ]. Applied Psychological Measurement, 2009, 33 ( 8 ) : 620 - 639.
  • 10de la Torre, J. & Hong, Y. Parameter Estimation With Small Sample Size: A Higher-Order IRT Model Approach [ J ]. Applied Psychological Measurement, 2010, 34(4): 267- 285.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部