期刊文献+

Modeling of a space flexible probe–cone docking system based on the Kane method 被引量:2

Modeling of a space flexible probe–cone docking system based on the Kane method
原文传递
导出
摘要 Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe-cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe-cone dock- ing system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system. Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe-cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe-cone dock- ing system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期248-258,共11页 中国航空学报(英文版)
基金 supported in part by the National Natural Science Foundation of China (Nos. 91216201, 51205403)
关键词 Dynamic models Flexible structures Impact testing Kane method Space probe-cone docking Dynamic models Flexible structures Impact testing Kane method Space probe-cone docking
  • 相关文献

二级参考文献2

共引文献11

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部