摘要
To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle- tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control) and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software struc- ture, the instructions with respect to the cutter's position and orientation can be directly carried out in the CNC system.
To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle- tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control) and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software struc- ture, the instructions with respect to the cutter's position and orientation can be directly carried out in the CNC system.
基金
supported by the National Basic Research Program of China (No. 2011CB302400)
the Important National Science & Technology Specific Projects (No. 2013ZX04007031).