期刊文献+

多模光场与二能级原子相互作用系统中保真度与纠缠度的关联 被引量:9

Relevance Between Fidelity and Degree of Entanglement in the System of Two-level Atoms Interacting with Multi-mode Fields
下载PDF
导出
摘要 利用全量子理论及数值计算方法,计算了由M个二能级原子和M个多模腔场构成的联合系统原子保真度和原子纠缠度,数值计算及分析表明:如果初始原子处于分离态,那么原子保真度与原子纠缠度始终存在相互反相的振荡现象,随着光场强度的增加,二者的振荡均会越来越频繁;在光场与原子强耦合的情况下,原子保真度更多趋于0、原子纠缠度更多趋于1;保真度较小不利于信息传输,但通过适当控制相互作用时间,可达到高保真度原子信息传输的目的. The atom fidelity and degree of entanglement were calculated in the system consisting of M two-level atoms and M multi-mode fields by use of complete quantum theory and number computing method. Through number computing and analyzing, it was found that the atom fidelity and the atom entangled degree present always oscillatory with opposite in phase if initial atoms are in separate state, and both of their frequency gradually increase with the intensity of light field increasing. The atom fidelity tends to 0 and degree of entanglement tends to 1 under strongly coupling between atoms and light fields. The small fidelity is disadvantage of information transfer but high-fidelity atom information transfer can still obtained by controlling appropriately interaction time.
作者 王菊霞
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第3期120-125,共6页 Acta Photonica Sinica
基金 国家自然科学基金(No.11304230) 陕西省自然科学基金(No.2013JM1006) 渭南市自然科学基础研究计划(No.2012KYJ-2) 渭南师范学院科研项目(No.13YKS010)资助
关键词 量子光学 量子信息 联合系统 保真度 纠缠度 关联 Quantum optics Quantum information Union system Fidelity Degree of entanglement Relevance
  • 相关文献

参考文献28

  • 1STEPHEN M B, RODNEY L, DAVID T P, et al. Phoenixd communication using quantum states[J]. Journal of Modern Optics, 1994, 41(12): 2351-2373.
  • 2BOSCHI D, BRANCA S, DE M F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J ]. Physical Review Letters, 1998, 80(6) : 1121-1125.
  • 3BRIEGEL H J, CALARCO T, JAKSCH D, et al. Quantum computing with neutral atom[J]. Journal of Modern Optics, 2000, 47(2/3) : 415-452.
  • 4BUZEK V, HILLERY M. Quantum copying: Beyond the nocloning theorem [J ]. Physical Review A, 1996, 54 (3) : 1844 -1852.
  • 5KEMPE J, SIMON C, WEIHS G. Optimal photon cloning [J]. Physical Review A, 2000, 62(3) : 032302- 0320310.
  • 6HILLERY M, BUZEK V B. Quantum secret sharing[J]. Physical Review A, 1999, 59(3) : 1829- 1834.
  • 7HILLERY M. Quantum cryptography with squeezed states [J]. Physical Review A, 2000, 61(2) : 022309- 022317.
  • 8YANG W L, YIN Z Q, HU Y, etal. High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation[J]. Physical Review A, 2011, 84 (1) : 010301- 010304.
  • 9MORGAN A J, D'ALFONSO A J, MARTIN A V, et al. High fidelity direct coherent diffractive imaging of condensed matte [J]. Physical Review B, 2011, 84 (14): 144122- 144128.
  • 10STEFANO O, MATTEO G A P. Fidelity matters: the birth of entanglement in the mixing of gaussian states[J]. Physical Reviezo Letters, 2011, 107(17) : 170505-170509.

二级参考文献69

共引文献58

同被引文献116

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部