期刊文献+

月球车实时遥操作方法研究 被引量:3

On real-time teleoperation of lunar rover
原文传递
导出
摘要 在月球探测任务中,利用无人月球车在月面移动,对一定范围的月面环境进行探测,是一种较为安全的方式.月球车的月面巡视是一个以轮地交互为基础、地面实时监视控制的过程.根据恢复的月面三维地形环境,地面进行探测目标选择和巡视路径规划,以远程控制的方式控制月面巡视.本文提出了一种月球车在线控制方式,基于虚拟现实技术,对月面地形环境和月球车状态进行运动学和视景仿真,地面控制人员通过人机交互,控制虚拟月球车行进,控制信号经验证后生成月球车的控制指令,实现月球车的在线控制.为应对地月通讯延时问题,采用预测显示方法,避免了大延迟的影响.本方法减少了控制环节,提高了月球车远程控制的效率和安全性. An online control platform was built based on virtual reality technology to control an unmanned lunar rover exploring the moon surface. 3-D topographic features of the lunar surface can be perceived and reconstructed with pictures taken by stereo cameras onboard the lunar rover. Combined with the telemetry data, a virtual full scene of the mission can be generated. Based on the terrain analysis, future probe points can be selected and path planning extracted. In particular, the future control plan for the rover can be visually verified. When the rover moves on the ground or probes some interesting rocks using its manipulator system, the whole process can be monitored in real time. Intervention commands can be transmitted to the rover at any time when necessary to change the control plan. Using a joystick or wheel, the rover on the moon can be controlled similarly to playing a racing car game. This online control platform can greatly improve the effectiveness and safety of teleoperation.
出处 《中国科学:信息科学》 CSCD 2014年第4期461-472,共12页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:No.61173080)资助项目
关键词 虚拟现实 预测显示 月球车 遥操作 空间探测 virtual reality, predictive display, lunar rover, teleoperation, space exploration
  • 相关文献

参考文献15

  • 1r Schebor F S, Turney J L. Realistic and consistent telerobotics simulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Charlottesville, 1991. 889-894.
  • 2Mazuryk T, Gervautz M. Virtual Reality History, Applications, Technology and Future. Technical Report. 1996.
  • 3Ellery A. Environment-robot interaction-the basis for mobility in planetary micro-rovers. Robot Auton Syst, 2004, 7: 1-10.
  • 4Yen J, Jain A, Balaram J. ROAMS: rover analysis modeling and simulation. Robot Automat Space, 1999, 440:249-254.
  • 5Backes P G, Norris J S, Powell M W, et al. Multi-mission activity planning for mars lander and rover mission. In: Proceedings of IEEE Aerospace Conference, 2004. 877-886.
  • 6Okada T, Sasaki S, Sugihara T, et al. Lander and rover exploration on the lunar surface: a study for SELENE-B mission. Adv Space Res, 2006 37:88-92.
  • 7Tarokh M, McDermott G, Hayati S, et al. Kinematic modeling of a high mobility mars rover. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, 1999:992-998.
  • 8Olson C F, Matthies L H, Schoppers M, et al. Rover navigation using stereo ego-motion. Robot Auton Syst, 2003, 43: 215-229.
  • 9Kubota T, Kuroda Y, Kunii Y, et al. Small, light-weight rover "Micro5" for lunar exploration. Acta Astronaut, 2003, 52:447-453.
  • 10Ishigami G, Nagatani K, Yoshida K. Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics. In: Proceedings of IEEE International Conference on Robotics and Automation, Piscataway, 2007. 2361-2366.

二级参考文献2

共引文献16

同被引文献56

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部