期刊文献+

基于3D骨架和MCRF模型的行为识别 被引量:5

Human activity recognition based on 3D skeletons and MCRF model
下载PDF
导出
摘要 针对目前行为识别方法的不足,提出一种基于人体3D骨架和多CRF模型(MCRF)的行为识别方法.3D骨架数据量少且保留了行为关键信息的优点,并具有融合多特征和上下文信息的优势.为此,首先基于3D骨架将人体动作划分为全局运动、手臂运动和腿部运动,通过对动作序列进行多类特征提取,形成多类特征集;然后利用CRF模型对每一特征集建模,再融合所有的CRF模型,得到MCRF模型;最后利用MCRF模型进行行为识别.实验结果表明,该方法具有较高检测率. Considering the disadvantages of the traditional human activity recognition system,a human activity recognition system using an MCRF model and 3D skeletons was proposed.Its 3D skeleton data has less data and retains the key information,and the MCRF model has the advantage of being able to combine more features and utilizing adaptive contextual information.First,human activity was divided into global activity,arm activity,and leg activity.Several feature subsets were formed through more feature extraction.Then,CRF models were used on each feature subset to generate CRF units.Finally,all the CRF units were combined to produce the MCRF model which was utilized to recognize human activity.The experimental results indicate that the proposed method can improve detection accuracy.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第4期285-291,共7页 JUSTC
基金 国家自然科学基金(61071173)资助
关键词 行为识别 3D骨架 MCRF 特征提取 human activity recognition 3D skeleton MCRF feature extraction
  • 相关文献

参考文献2

二级参考文献73

  • 1李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 2冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 3Aggarwal J K, Cai Q. Human motion analysis: A review [ J]. Computer Vision and Image Understanding, 1999, 73 (3) : 428-440.
  • 4Gavrila D M. The visual analysis of human movement: A survey [ J]. Computer Vision and Image Understanding, 1999, 73( 1 ): 82-98.
  • 5Moeslund Thomas B, Granum Erik. A survey of computer visionbased human motion capture [ J ]. Computer Vision and Image Understanding, 2001, 81 (3): 231-286.
  • 6Moeslund Thomas B, Hilton Adrian, Kruger Volker. A survey of advances in vision-based human motion capture and analysis [ J]. Computer Vision and Image Understanding, 2006, 104(3) : 90-126.
  • 7Johansson G. Visual motion perception [ J ]. Scientific American, 1975, 232(2) : 76-88.
  • 8Robertson N, Reid I. A general method for human activity recognition in video [ J ]. Computer Proceedings of Vision and Image Understanding, 2006, 104(2-3): 232-248.
  • 9Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C], New York, USA, 2006: 1709-1718.
  • 10Wang Liang, Suter David. Informative shape representations for human action recognition [ A ] . In: Proceedings of International Conference on Pattern Recognition [ C ], Hong Kong, 2006: 1266-1269.

共引文献52

同被引文献42

  • 1刘懿,王敏.基于时空域3D-SIFT算子的动作识别[J].华中科技大学学报(自然科学版),2011,39(S2):134-136. 被引量:3
  • 2李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 3Chen Lulu,Wei Hons,Ferryman J.A survey of human motion analysis using depth imagery[J].Pattern Recognition Letters,2013,34(15):1995-2006.
  • 4Laptev I,Marszalek M,Schmid C,et al.Learning realistic human actions from movies[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.] :IEEE Press,2008:1-8.
  • 5Le Q V,Zou W Y,Yeung S Y,et al.Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2011:3361-3368.
  • 6Liu Li,Shao Ling,Rockett P.Human action recognition based on boosted feature selection and naive Bayes nearest-neighbor classification[J].Signal Process,2013,93(6):1521-1530.
  • 7Goudelis G,Karpouzis K,Kollias S.Exploring trace transform for robust human action recognition[J].Pattern Recognition,2013,46(12):3238-3248 .
  • 8Khemchandani R,Chandra S.Twin support vector machines for pattern classification[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
  • 9Kumar M A,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems Applications,2009,36(4):7535-7543.
  • 10Ripley B D.Pattern recognition and neural networks[M].Counbridge:Cambridge University Press,2007.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部