期刊文献+

基于特征学习与特征记忆模板更新机制的粒子滤波跟踪 被引量:6

Particle filter tracking based on feature-learning and feature-memory template update mechanism
下载PDF
导出
摘要 目标运动的多样性以及背景环境的复杂性是影响目标跟踪鲁棒性的主要原因.受背景颜色、光照以及姿态尺度变化等因素的影响,目标模板更新精度不高、目标跟踪鲁棒性差.针对此类问题,提出了一种基于特征学习与特征记忆的模板更新机制,通过构建目标模板库,保存丰富的运动目标信息,采用粒子滤波跟踪算法,将候选模板与模板库中的目标信息进行匹配,确定目标状态实现跟踪.实验结果表明,该算法以更丰富的目标信息进行跟踪,比传统目标模板更新策略的粒子滤波算法具有更高的跟踪精度和更强的鲁棒性. The diversity of object motion and the complexity of background decrease the robustness of object tracking.Similarity of background colors,changes in illumination and object deformation lower the accuracy of the object template and the robustness of object tracking.To deal with this problem,a template update mechanism based on feature-learning and feature-memory was proposed.The algorithm built an object template library by preserving abundant information of the object.By matching the object with the object template library,the state of the object was obtained and the object was thcn tracked by particle filter.Experimental results show that the proposed method has better accuracy and robustness than the particle filter based on traditional object template update strategies.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第4期292-302,共11页 JUSTC
基金 国家自然科学基金(61005091 61375079)资助
关键词 特征学习 特征记忆 模板库 粒子滤波 目标跟踪 feature-learning feature-memory template library particle filter object tracking
  • 相关文献

参考文献37

  • 1EomK Y, Ahn T K, Kim G J, et al. Fast object tracking in intelligent surveillance system [ C ]// International Conference on Computational Science and Its Applications. Seoul, Korea: Springer, 2009.- 749-763.
  • 2Kettnaker V, Zabih R. Bayesian multi camera surveillance [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE Computer Society, 1999: 253-259.
  • 3Shan C F, Tan T N, Wei Y C. Real-time hand tracking using a mean shift embedded particle filter[J]. Pattern Recognition, 2007, 40(7) : 1 958-1 970.
  • 4Zhao T, Aggarwal M, Kumar R, et al. Real-time wide area multi-camera stereo tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern RecognitiorL San Diego, USA: IEEE Computer Society, 2005 : 976-983.
  • 5Siagian C, Itti L. Biologically inspired mobile robot vision localization[J]. IEEE Transactions on Robotics, 2009, 25(4): 861-873.
  • 6Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. ACM Computing Surveys, 2006, 38(4) : 1- 45.
  • 7Broida T J, Chellappa R. Estimation of object motion parameters from noisy images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1) : 90-99.
  • 8Isard M, Blake A. Condensation-conditional density propagation for visual tracking [ J ]. International Journal on Computer Vision, 1998, 29(1): 5-28.
  • 9Allen J G, Xu R Y D, Jin J S. Object tracking using CamShift algorithm and multiple quantized feature spaces [C]// Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing. Darlinghurst, Australia: Australia Computer Society, 2004: 3-7.
  • 10Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE Computer Society, 2000, 2: 142-149.

二级参考文献13

  • 1Isard M, Blake A. Condensation: Conditional density propagation for visual tracking[J]. Int J of Computer Vision, 1998, 29(1): 5-28.
  • 2Chang C, Ansari R. Kernel particle filter for visual tracking[J]. IEEE Signal Processing Letters, 2005, 12(3): 242-245.
  • 3Zhou S, Chellappa R, Moghaddam B. Appearance tracking using adaptive models in a particle filter[C]. Proc of 6th Asian Conf on Computer Vision. Jeju Island, 2004.
  • 4Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance-adaptive models in particle filters[J]. IEEE Trans on Image Processing, 2004, 13(11): 1491-1506.
  • 5Nummiaro K, Koller-Meier E, Gool L V. Object tracking with an adaptive color-based particle filter[J]. Pattern Recognition, Lecture Notes in Computer Science, 2002, 2449: 353-360.
  • 6Li P H, Zhang T W. Visual contour tracking based on particle filters[J]. Image and Vision Computing, 2002, 21(1): 111-123.
  • 7Shen C, Hengel A V D, Dick A. Probabilistic multiple cue integration for particle filter based tracking[C]. Proc of the 7th Digital Image Computing: Techniques and Applications. Sydney, 2003: 399-408.
  • 8Choi E, Lee C. Feature extraction based on the Bhattacharyya distance[J]. Pattern Recognition, 2003, 36(8): 1703-1709.
  • 9Mak B, Barnard E. Phone clustering using the Bhattacharyya distance[C]. The 4th Int Conf on Spoken Language. Philadelphia, 1996, 4: 2005-2008.
  • 10Lainiotis D G. On a general relationship between estimation, detection, and the Bhattacharyya coefficient[J]. IEEE Trans on Information Theory, 1969, 15(4): 504-505.

共引文献14

同被引文献71

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 4周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 5KRATZ L, NISHINO K. Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes[J]. IEEE Transactions on PAMI, 2012,34 (5) : 987- 1002.
  • 6LEICHTER I. Mean shift trackers with cross-bin metrics [J].IEEE Transactions on PAMI, 2012,34(4) : 695-706.
  • 7NING J F,ZHANG L,ZHANG D,et al.Scale and orientation adaptive mean shift tracking[J]. IET Computer Vision, 2012,6(t) :52-61.
  • 8LEE J, SANDHU R, TANNENBAUM A.Particle filters and occlusion handling for rigid 2D-3D pose tracking[J]. Computer Vision and Image Understanding, 2013,117: 922-933.
  • 9ZHONG W, LU H C, YANG M H. Robust object tracking via aparsity-based collaborative model [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Computer Society, 2012 :1838-1845.
  • 10NUMMIARO K,KOLLER M E,GOOL L V.An adaptive color based particle filter[J]. Image and Vision Computing, 2003,21 ( 1 ) : 99-110.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部