期刊文献+

用PCS提高QWIP-LED光提取效率的仿真研究

Study of Light Extraction Efficiency of QWIP-LED Enhanced by Photonic Crystal Slab Based on Simulation
下载PDF
导出
摘要 量子阱红外探测器发光二极管(Quantum Well Infrared Photodetector Light Emitting Diode,QWIP-LED)是一种新型红外上转换器件,配合电荷耦合器件(Charge Coupled Device,CCD)能够实现中波红外成像探测。与常规红外成像器件相比,QWIP-LED最大的优势在于成本低。然而,QWIP-LED较低的光提取效率(约2%)严重制约了该器件的广泛应用。以提高QWIP-LED的光提取效率为目标,在LED表面引入二维光子晶体薄膜(Photonic Crystal Slab,PCS)结构,采用时域有限差分法(Finite-Difference Time-Domain,FDTD)计算了其对光提取效率的改善效果,并对PCS的结构参数进行了优化。仿真结果表明,优化的PCS可以使QWIP-LED的光提取效率提高2.32倍。最后,基于PCS的能带理论以及等效介质理论,对PCS结构提高器件光提取效率的机理进行了分析。 A Quantum Well Infrared Photodetector Light Emitting Diode (QWIP-LED) is a new infrared up-converter. When combining with a Charge Coupled Device (CCD), it can be used for mid-wave infrared imaging detection. Compared with the conventional infrared imaging devices, QWIP-LEDs have a remarkable advantage of low cost. However, because of the low light extraction efficiency (~2%), their application is limited. To improve the light extraction efficiency of the QWIP-LED, a Photonic Crystal Slab (PCS) is incorporated into the surface of the LED. Then, a Finite Difference Time Domain (FDTD) method is used to calculate the improved light extraction efficiency, so as to optimize the structure parameters of the PCS. The simulation result shows that by using an optimized PCS, the light extraction efficiency of the QWIP-LED can be increased by a factor of 2.32. Finally, the mechanism for the PCS to increase light extraction efficiency is analyzed according to the band theory and equivalent medium theory.
出处 《红外》 CAS 2014年第4期13-17,44,共6页 Infrared
关键词 QWIP-LED 二维光子晶体薄膜 光提取效率 QWIP-LED photonic crystal slab light extraction efficiency
  • 相关文献

参考文献14

  • 1Liu H C, Li J, Wasilewski Z R, et al. Inte- grated Quantum Well Intersub-band Photodetector and Light Emitting Diode[J]. Electronics Letters, 1995, 31(10): 832- 833.
  • 2Dupont E, Byloos M, Gao M, et al. Pixelless Ther- mal Imaging with Integrated Quantum-well Infrared Photodetector and Light-emitting Diode[J]. Photon- ics Technology Letters, IEEE, 2002,14(2): 182 -184.
  • 3Dupont E, Byloos M, Oogarah T, et al. Optimiza- tion of Quantum-well Infrared Detectors Integrated with Light-emitting Diodes [J].Infrared Physics and Technology, 2005,47 (1-2): 132-143.
  • 4Zhen H L, Li N, Xiong D Y, et al. Fabrication and Investigation of an Upconversion Quantum Well In- frared Photodetector Integrated with Light-Emitting Diode[J].Chinese Physices Letter, 2005, 22(7): 1806- 1808.
  • 5Schnitzer I, Yablonovitch E, Caneau C, et al. 30% External Quantum Efficiency from Surface Textured, Thin-film Light-emitting Diodes[J].Applied Physics Letters, 1993,63(16): 2174-2176.
  • 6Fujii T, Gao Y, Sharma R, et al. Increase in the Extraction Efficiency of GaN-based Light-emitting Diodes via Surface Roughening[J].Applied Physics Letters. 2004.84(6): 855-857.
  • 7齐云,戴英,李安意.提高发光二极管(LED)外量子效率的途径[J].电子元件与材料,2003,22(4):43-45. 被引量:18
  • 8Zhmakin A I. Enhancement of Light Extraction From Light Emitting Diodes[J].Physics Reports, 2011, 498(4-5), 189-241.
  • 9Boroditsky M, Krauss T F, Coccioli R, et al. Light Extraction from Optically Pumped Light-emitting Diode by Thin-slab Photonic Crystals [J].Applied Physics Letters, 1999,75(8): 1036-1038.
  • 10Fujita M, Takahashi S, Tanaka Y, et al. Simulta- neous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals[J].Science, 2005,308(5726): 1296-1298.

二级参考文献25

  • 1徐征,赵辉,杨盛谊,许秀来.场发射显示技术研究进展[J].半导体光电,1999,20(3):145-148. 被引量:3
  • 2[1]Kato T, Susawa H, Hirotani M, et al. GaAs/GaAlAs surface emitting IR led with bragg reflector grown by MOCVD [J]. J Cryst Growth, 1991, 107: 832.
  • 3[2]Ishikawa M, Shiozawa H, Itaya K, et al. Temperature dependence of the threshold current for InGaAlP visible laser diodes [J]. IEEE J Quantum Electron, 1991, 27: 23-29.
  • 4[3]Yablonovitch E, Huang D M, Gmitter T J, et al. Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates [J]. Appl Phys Lett, 1990, 56: 2419.
  • 5[4]Schnitzer I, Yablonovitch E, Caneau C, et al. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally from AlGaAs/GaAs/AlGaAs double heterostructures [J]. Appl Phys Lett, 1993, 62: 131.
  • 6[5]Adachi S, Oe K. Chemical etching characteristics of (001)GaAs [J]. J Elcetrochem Soc, 1983, 130: 2427.
  • 7[6]Liau Z L, Mull D E. Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration [J]. Appl Phys Lett, 1990, 56: 737.
  • 8[7]Kish F A, Steranka F M, Defevere D C, et al. Vary high-efficiency semiconductor wafer-bonded transpatent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes [J]. Appl Phys Lett, 1994, 64: 2839.
  • 9[8]Hofler G E, Vanderwater D A, Defevere D C, et al. Wafer bonding of 50-mm diameter GaP to AlGaInP light-emitting diode wafers [J]. Appl Phys Lett, 1996, 69(6): 803.
  • 10[9]Benisty H, Deneve H, Weisbnch C. Impact of planar microcavity effects on light extraction-Part I: bacic concepts and analytical trends [J]. IEEE J Quantum Elcetron, 1998, 34(9): 1312.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部